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ABSTRACT 

Although fully automated production systems have been developed and used in some 

industry leaders, most of the precast concrete factories have yet to be developed to that 

stage. Semi-automated production lines are still popularly used. As production 

productivity can be maximally improved within the physical constraints by applying 

a sound production plan, this paper tends to propose a production planning method for 

the semi-automated precast concrete production line using genetic algorithm (GA). 

The production planning problem is formulated into a flexible job shop scheduling 

problem (FJSSP) model and solved using an integrated approach. Thanks to the 

development of new technologies such as building information modeling (BIM) 

platform and radio frequency identification (RFID), implementation of a just-in-time 

(JIT) schedule in the semi-automated precast concrete production line becomes 

practicable on the grounds of risk mitigation and enhanced demand forecast capability. 

In this regard, the optimization objectives are minimum makespan, station idle time, 

and earliness and tardiness penalty. An example was applied to validate the integrated 

GA approach. The experimental results show that the developed GA approach is a 

useful and effective method for solving the problem that it can return high-quality 

solutions. This paper thus contributes to the body of knowledge new precast concrete 

production planning method for practical usage. 
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Introduction 
Precast concrete construction is the manufacturing of 

concrete products in a pre-made and reusable mold and 

then, after being cured in a controlled environment, 

transporting, positioning and assembling them into a 

structure with minimal additional site work. Precast 

concrete construction has attracted worldwide concerns 

because of its significant role in the realization of 

sustainable development goals and its market is boosted 

by the rapid pace of industrialization and urbanization. 

There are many incentives and schemes available from 

governments to push for precast concrete construction. 

Take Singapore as an illustration, the Housing and 

Development Board (HDB) has been actively adopting 

precast concrete technology since the 1980s. Today, the 

precast concrete implementation level is maintained at 

about 70% for each HDB project [1]. The government 

directives accelerate the rate of precast concrete adoption 

and eventually speed up the move of modernization, 

mechanization, and industrialization in the precast 

concrete industry [2]. 

 

As the construction industry is shifting to manufacturing 

and mass production, implementing the best 

manufacturing practices such as lean manufacturing (LM) 

will help to improve productivity and customer 

satisfaction. Originated from the Japanese Toyota 

Production System (TPS), LM facilitates the production 

of diverse products in flexible volumes [3]. It is one 

approach that suits for any company, regardless of firm 

size, business sector, organizational culture, and 

geographic location. LM is a philosophy grounded on five 

basic principles: value, value streams, flow, pull and 

perfection [4]. Under the umbrella of lean philosophy and 

principles, there are a wide variety of lean tools, for 

example: value stream mapping (VSM), Kanban/pull, 

just-in-time (JIT), total production maintenance (TPM), 

5S (sort, straighten, shine, standardize and self-

discipline), cellular manufacturing, Jidoka (automation) 

and continuous improvement. In short, LM can be 

described as a systematic method for the elimination of 

waste within a manufacturing process [5]. Seven potential 

sources of wastes including over-production, waiting, 

transportation, over-processing, inventory, motion, and 

defects, are often mentioned that need due consideration 

during lean implementation [6,7]. Some researchers also 

add excess human resources as the eighth waste [8]. 

 

Precast concrete companies are mostly small and 

medium-sized enterprises (SMEs) [9]. While LM tools 

such as VSM, Kanban/pull, and TPM are mostly utilized, 

literature reviews from past journals show that JIT 

production is rarely implemented in SMEs [10]. 

Certainly, JIT is never easy for larger companies to 

implement, too. JIT refers to the production of goods to 

meet customer demand exactly, in time, quality and 

quantity. Many people may confuse about JIT and LM. 

JIT aims at creating the ideal balance of inventory and 

workflow to avoid excess and shortages, while LM is 

implemented to improve quality and reduce waste. 

Because JIT and LM share most of the same 

characteristics, goals, and philosophy, although strictly 

speaking JIT is one LM tool, a lot of people deem JIT as 

another term of LM. Besides, the terms JIT, TPS, pull 

production and Kanban are often used interchangeably in 

the literature, too [11]. JIT flow depends on production 

leveling. Compared to larger companies, SMEs have 

disadvantages of lacking resources and skills. In addition, 

the lack of scale and bargaining power hinder the smooth 

operations of their production systems under the effects 

of market dynamism.  

 

Despite many challenges, Dowlatshahi and Taham [12] 

argued that JIT is still applicable to SMEs. The emergence 

of various cloud-based collaborative systems, which 

make real-time information sharing amongst all 

stakeholders in the supply chain a reality, is gradually 

mitigating the traditional barriers of SMEs to implement 

JIT. Particularly, in the construction sector, the building 

information modeling (BIM) collaboration cloud 

platforms enable more effective and efficient 

communications for different parties on the design and 

construction phases [13]. In this context, this paper aims 

to perform JIT optimization in precast concrete 

companies for precast concrete production.  

 

Similar attempts have been observed in previous studies. 

Chan and Hu [14] developed a flow shop sequencing 

model using a genetic algorithm (GA) for production 

organization in precast factories. The objective is a 

weighted function based on the maximum makespan and 

the penalties for earliness and tardiness. The latter part 

represents the JIT criterion. Ko and Wang [15] improved 

the model by taking the limited buffer size between 

stations into consideration. However, these previous 

models assume a fully automated production line. In 

reality, few precast concrete companies have developed 

to that level. The majority of them combine manual and 

automated operations, thus achieving a semi-automated 

status. Compared to fully automated production lines, 

semi-automated ones are more flexible, whereby there are 

more decision variables that need to be determined. 

Therefore, the models designed for fully automated 

production lines cannot be readily applicable to the semi-

automated ones. To fill in this gap, the study attempts to 

develop a production scheduling model, particularly to 

address the nature of a semi-automated precast concrete 

production line. Similar to the previous ones, the 

optimization model will contain a JIT criterion. 

 

The remaining of this paper is organized as follows: after 

this introduction, Section 2 describes the ways to improve 

the practices of a precast concrete factory and a typical 

semi-automated precast concrete production line and its 
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main problems. Section 3 develops the problem model 

and Section 4 gives the solving algorithm, which is a 

simulation-based GA approach. An experimental case 

study is given in Section 5. And finally, the paper is 

concluded in Section 6. 

 

The lean approach in precast concrete 

production 
The ways to get lean 

The practices of a precast concrete factory are usually 

divided into two phases: the design phase and the 

fabrication phase. Before fabrication, shop drawings of 

individual precast concrete elements are required to be 

prepared and detailed. The shop drawings are usually 

produced in-house and submitted to architects/owners for 

approval. There may be several rounds of revisions and 

resubmissions. The procedure continues until the 

drawings get approved. Any discrepancies among the 

architectural, structural and production requirements 

must be resolved before sending these drawings for 

fabrication to minimize abortive works. In general, an 

overall reduction of lead time requires process 

improvements in both the design phase and the 

fabrication phase.  

 

Nowadays, the use of BIM software can significantly 

simplify the design phase [16]. The BIM models are not 

purely geometric models or 3D representations as before. 

They are integral models that contain all information in 

terms of architecture, installations, and constructions. 

Every time a specific type of information is added into the 

3D BIM model, an extra dimension is set and, for this 

reason, various dimensions have been generated, for 

example, 4D BIM (construction sequencing), 5D BIM 

(cost), 6D BIM (energy consumption), and 7D BIM (asset 

lifecycle). In the era of the cloud, the BIM platform 

provides a common data environment. By virtue of the 

cloud-based BIM technology, the creation of piece details 

is as simple as a button click event. File transfer can be 

done automatically according to the status of the 

information. And any change of information will auto-

populate. As a result, the BIM-automated processes 

streamline the repetitive workflow and guarantee the 

quality of the results.   

 

On the other hand, the fabrication productivity can be 

maximally improved within the physical constraints by 

applying a sound production plan. Production planning is 

a complex process that covers a wide variety of activities 

to manage a balance between customer demand and 

available capacity and resources. Scheduling is a critical 

step in production planning. It fixes the starting and 

completing date and time for each operation and the 

amount of work to do. A well-planned production always 

has a well-planned schedule. As precast concrete 

elements are usually big, bulky and heavy, and more often 

than not, require the use of cranes for hoisting, JIT 

delivery alleviates the space constraints for storage and 

the traffic congestion on the construction site. Hence, to 

create a JIT precast concrete production schedule seems a 

very attractive goal for the industry. 

 

Nevertheless, the success of a JIT implementation relies 

on many factors such as external economic environments, 

global and logistical issues, behavioral constraints, 

intractable accounting systems, small supplier difficulties 

and so on [17], and moreover, leads to a major 

organizational change, the companies that want to adopt 

JIT must consider a trade-off between costs and savings. 

JIT companies usually bear more inventory risks. 

Empirically, they cannot tolerate fluctuations of more 

than 10% in the schedule. Hence, the precast concrete 

companies are unable to achieve the JIT goals by 

increasing efficiency on their part alone if their clients and 

contractors are not equally effective. Surveys and 

interviews showed that there was a time that the precast 

concrete companies were reluctant to adopt JIT as they 

lacked confidence in various factors such as site readiness 

and unreliable logistics [18].  

 

Now that BIM platforms allow for greater transparency 

and involvement of project partners, it becomes much 

easier to coordinate design, fabrication and site 

operations. Sacks et al [19] stated that BIM-enabled 

visualizations facilitate pull flow and deeper 

collaboration between teams on and off-site. Moreover, 

Jeong et al. [20] mentioned that the BIM-integrated 

simulation aid the reliable prediction of on-site 

performance, and reliability in production allows all 

project partners to manage their work with minimum 

buffers. 

 

Radio frequency identification (RFID) is another 

emerging technology that RFID tags are now widely used 

to replace the traditional barcode system in precast 

concrete factories for managing and tracking precast 

concrete elements. RFID technology improves visibility 

from the point of manufacture, throughout the supply 

chain. It provides a greater degree of flexibility for system 

control and information dissemination [21]. The 

supporting role of RFID in the context of lean thinking 

has been extensively discussed by many researchers 

[22,23]. 

 

Generally, the benefits of BIM and RFID for SMEs are 

the same as those for larger companies. Therefore, 

implementation of a JIT schedule in semi-automated 

precast concrete production lines is practicable on the 

grounds of risk mitigation and enhanced demand forecast 

capability thanks to these new technologies [24]. 

 

A semi-automated production line 

The products that are fabricated in a precast concrete 

factory fall into two main categories; namely precast 
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concrete elements and prefabricated modular units. 

Furthermore, precast concrete elements consist of two 

types: precast reinforced concrete elements and precast 

prestressed concrete elements. They include individual 

structural elements like walls, floors, and roofs, as well as 

columns, beams, and stairs, while prefabricated modular 

units refer to free-standing 3D modules which are 

completed with internal finishes, fixtures, and fittings, 

examples are prefabricated bathroom unit (PBUs) and 

prefabricated prefinished volumetric construction 

(PPVCs). The current study is focused on the fabrication 

of precast concrete elements, especially, the precast 

reinforced concrete elements.  

 

Fabrication of precast reinforced concrete elements can 

use either stationary or mobile systems. When using the 

stationary system, the positions of the products are fixed 

from beginning to end. Workers have to carry the tools 

and materials to search for their assigned jobs in the plant 

from time to time. One team of workers may need to 

perform multiple tasks and multiple processes. On the 

contrary, in the mobile system, workers’ positions are 

fixed, and the production process is divided into different 

stages, enabling workers to focus on specific tasks. Rather 

than staying at fixed positions, products move along the 

processes by means of automated guided vehicles 

(AGVs), or a rolling track, or a conveyor system. The 

flow becomes continuous if operating 24/7. 

 

The stationary system is the entry into the precast 

concrete production, for mass production, the use of a 

mobile system is more common as the latter improves 

productivity. The mobile system is also called a pallet 

circulation system or a carousel plant, in which molds are 

placed on steel production pallets, moving from one 

station (which is a fixed space in the plant) to another, 

with different sequence activities being performed on 

each station. Operations on the stations can be done by 

either humans or robots. In the manual handling case, 

operations on the stations are allowed to change, thus 

increasing the flexibility. To manufacture products with 

different types, semi-automated mobile systems are most 

commonly used, especially in SMEs. A semi-automated 

production line combines the flexibility of manual 

processes and the reliability of automated systems. 

 

Converting from a conventional stationary system to a 

process-oriented mobile system, process reengineering 

has to be performed on the traditional precast concrete 

production process [25]. The process flow for the 

manufacture of precast reinforced concrete elements is 

now divided into the following sequences: (1) setting 

mold; (2) placing reinforcement; (3) casting; (4) curing; 

(5) demolding; and (6) finishing. In a semi-automated 

plant, some of these processes are conducted with the 

workers’ hands, for example, setting mold, placing 

reinforcement, demolding, and finishing, while the 

processes of curing and casting are usually fully 

automated, see Figure 1. 

 

Figure 2 presents the layout of a typical semi-automated 

precast concrete plant. Manual operations are performed 

on fixed space, which are deemed as stations. In this 

mobile system, pallets are moved from one station to 

another by rolling tracks. Casting is made by an automatic 

casting system. Concrete curing is conducted in curing 

chambers, which are high-rise racks that have plenty of 

space for curing as well as storing for the work-in-

progress (WIPs). There is a computer-controlled 

conveyor system, enabling fast storage and retrieval. The 

finished goods are temporarily placed in the storage yard 

and finally loaded onto trucks by means of a bridge crane. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 

 
 

 

 
 

The main problems 

From a site visit to a middle-sized precast concrete 

company in Singapore, the following major problems 

were identified in its semi-automated production line of 

precast reinforced concrete elements.  

• Difficult to achieve an efficient schedule – If the 

products are heterogeneous with different 

requested delivery dates, it is difficult to design an 

efficient schedule. Some jobs may have to wait for 

the availability of the stations, whilst some stations 

have to wait idly for the arrival of new jobs. 

• Resource conflict – Having just one work shift, it 

creates problems in coordinating access to 

common resources. For example, under a casting 

cycle of one day, there will be a crane demand 

surge in the morning for demolding hardened 

elements. 

• High vertical stacks – The vertical stacking of 

finished goods leads to problems when stacking 

high. Firstly, when products in the middle are 

wanted, all the others above them must be 

removed first. Secondly, unstable stacks may 

become a safety hazard as they may topple and 

injure workers. Thirdly, quality issues may occur 

on the bottom products as they perhaps experience 

excessive stress. 

• Excessive stock – On-time delivery is the most 

important metric to measure a precast concrete 

factory’s performance. Usually, the factory will 

overproduce so that it can rapidly respond to 

demand variations. Hence, excessive stock is a 

pervasive problem in the precast concrete factory. 

The surplus consumes a lot of storage space and 

maybe forgotten resulted from poor inventory 

management.  

 

The identified problems seem to be prevalent in the 

middle-sized precast concrete companies. A direct way to 

solve them fundamentally is to apply a sound production 

schedule with JIT objective that balances resources and 

Figure 1. Site photos: (a) manually setting mold; (b) 

manually placing rebar; (c) automatic casting; (d) 

automatic curing; (e) manually demolding and 

finishing; (f) finished goods storage 

Figure 2. Plant layout of a semi-automated precast 

concrete production line 
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minimizes inventory level. This paper aims to provide 

such an optimal production plan to solve these problems. 

 

Precast concrete production modeling 
Model description 

The precast concrete production scheduling problem is 

found to possess many of the characteristics of the 

traditional job shop scheduling problem (JSSP) [14]. 

JSSP regards production as a continuous flow. In the 

JSSP, multiple jobs are processed on several machines. 

Each job consists of a sequence of operations, which must 

be performed in a given order, and each operation must 

be processed on a specific machine. The JSSP model suits 

the automated precast concrete production. However, 

when a machine to perform which operation becomes 

uncertain as what usually happens in the semi-automated 

precast concrete production system, the JSSP model is not 

very applicable. Therefore, the problem must be re-

visited.  

 

The flexible job shop scheduling problem (FJSSP) is an 

extension of the classical JSSP which allows an operation 

to be processed by any station from a given set. The 

FJSSP consists of two sub-problems: the assignment 

problem and the scheduling problem. The assignment 

problem is to assign operations to each station such that a 

station is dedicated to a set of operations, while the 

scheduling problem is to select stations to process certain 

operations out of the operation set and determine the 

processing order of jobs on each station. The planning 

problem for this semi-automated case can be modeled as 

a FJSSP.  

 

The problem model is defined as follows: A set of jobs 

are processed on several different stations. The operation 

sequence of all the jobs is the same as shown in Figure 3. 

Stations are flexible to perform different operations, and 

jobs can revisit the same station for different operations. 

Limited central storage space is assumed. There are two 

sub-problems. One is to assign operations on each station, 

and another is to determine the processing order of jobs at 

each station.  

 

 

 
 

Assumptions 

There are several constraints for the job shop problem. 

For example, no operation for a job can be started until 

the previous operation for that job is completed, a 

machine can only work on one operation at a time, and an 

operation, once started, must run to completion. In the 

following, the main model assumptions are summarized. 

1. Flexible stations can perform different operations, 

but each station executes one operation at a time. 

2. One station only processes one job at a time and 

one job can be handled by at most one station at 

any given time.  

3. Operations of a job must be performed in a specific 

order. 

4. A distinction is made between working time, non-

working time, and overtime. 

5. Processing, set-up, loading, and unloading times 

are available and are deterministic. 

6. The WIPs are stored in a central yard. 

7. The operation once started, must run to 

completion. 

8. The first-come-first-serve rule is applied. One job 

immediately starts its operation when station is 

available. 

9. Such issues as machine failure or downtime, 

scraps, rework, material and worker unavailability 

are ignored and left as issues to be considered 

during real-time control. 

 

Notations 

Parameters: 

𝑂𝑖: the operation, 1,…, o 

𝐽𝑗: the job, 1,…,n 

𝑀𝑘: the station, 1,…,m 

𝑃(𝑂𝑖 , 𝐽𝑗 ,𝑀𝑘): the process time for performing 

operation 𝑂𝑖 of job 𝐽𝑗 on station 𝑀𝑘 

𝐶(𝑂𝑖 , 𝐽𝑗 ,𝑀𝑘): the completion time for performing 

operation 𝑂𝑖 of job 𝐽𝑗 on station 𝑀𝑘 

𝑊(𝑂𝑖 , 𝐽𝑗 ,𝑀𝑘): the wait time of job 𝐽𝑗 that finishes 

operation 𝑂𝑖 on station 𝑀𝑘 for its next  operation 

𝐼(𝑀𝑘): the accumulated time that station 𝑀𝑘 has no job  

𝑇: the accumulated completion time 

𝐸𝑇𝑎(𝐽𝑗): the earliest due date for job 𝐽𝑗 

𝐸𝑇𝑏(𝐽𝑗): the latest due date for job 𝐽𝑗 

𝐵(𝑡): the available central buffer size at time t 

𝜒(𝐽𝑗, 𝑡): the available number of the mold of job 𝐽𝑗 at time 

t 

𝛼(𝐽𝑗): the earliness penalty coefficient 

𝛽(𝐽𝑗): the tardiness penalty coefficient 

𝐻𝑤: the working hours provided by a workday 

𝐻𝑁: the non-working hours in a working day 

𝐻𝐸: the allowable overtime in a workday 

𝐷; the working days 

 

Decision variables: 

𝑥(𝑂𝑖 , 𝑀𝑘):  binary variable, 1 if operation 𝑖 is assigned to 

station 𝑀𝑘; 0 otherwise 

𝑦(𝑀𝑘 , 𝑟):  integer, 1,…,n , implies the preference rank of 

a job on station 𝑀𝑘 

Figure 3. Operation sequence 
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The following equations are the same as those in the paper 

of Chan and Hu [14] which defined the problem as the 

traditional JSSP. Because in the JSSP the problem is 

deemed as a continuous flow, equation used to calculate 

the completion time should be: 
 

𝐶(𝑂𝑖 , 𝐽𝑗 ,𝑀𝑘) = 𝑚𝑎𝑥{𝑐1, 𝑐2}+𝑃(𝑂𝑖 , 𝐽𝑗 ,𝑀𝑘)   

𝑐1 = 𝐶(𝑂𝑖 , 𝐽𝑗−1,𝑀𝑘) +𝑊(𝑂𝑖 , 𝐽𝑗−1, 𝑀𝑘)  (1) 

𝑐2 = 𝐶(𝑂𝑖−1, 𝐽𝑗 ,𝑀𝑙)   
 

where 𝑐1 means the station available time; 𝑐2 means the 

completion time of the previous operation of the job, 𝑀𝑙 
is the station that the job just visited. Waiting time on the 

station incurs when jobs cannot go to the central buffer 

area because the buffer area is full.  
 

Because except for casting and curing operations which 

are uninterruptible, the other operations including setting 

mold, placing reinforcement, demolding, and finishing 

are interruptible which means they can be stopped if the 

job cannot be completed within the working hours and 

can be continued on the next working day. The interrupted 

operations are formulated in Equation (2): 
 

𝐶(𝑂𝑖 = 1,2,5,6, 𝐽𝑗 , 𝑀𝑘) = {
𝑇 𝑇 < 24𝐷 + 𝐻𝑤

𝑇 + 𝜀 ∙ 𝐻𝑁 𝑇 ≥ 24𝐷 + 𝐻𝑤
 (2) 

 

where 𝐷 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑇 24⁄ ) 
and 𝜀 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟((𝑇 − 24𝐷) 𝐻𝑤⁄ ). 
 

Since concrete casting can be executed without a worker, 

the casting can be scheduled into overtime. But because 

casting is an uninterrupted activity, the job must be 

postponed to the next working day if it cannot be 

completed within the working hours plus the overtime. 

The completion time for casting is calculated using 

Equation (3): 

 

𝐶(𝑂𝑖 = 3, 𝐽𝑗 , 𝑀𝑘) = {
𝑇 𝑇 ≤ 24𝐷 + 𝐻𝑤 +𝐻𝐸

24(𝐷 + 1) + 𝑃(𝑂𝑖 = 3, 𝐽𝑗 , 𝑀𝑘) 𝑇 > 24𝐷 + 𝐻𝑤 +𝐻𝐸
 (3) 

 

Curing is also an uninterrupted activity. Steam curing 

generally takes 12 to 16 hours without workers in the 

curing chamber. Thus, it is frequently executed overnight. 

The completion time can be deemed as the beginning of 

the next working day. The completion time for curing is 

formulated using Equation (4): 
 

   𝐶(𝑂𝑖 = 4, 𝐽𝑗 ,𝑀𝑘) = {
𝑇 𝑇 < 24𝐷 +𝐻𝑤

24(𝐷 + 1) 𝑇 ≥ 24𝐷 +𝐻𝑤
 (4) 

 

The steel molds are critical resources for precast concrete 

production. The molds are assigned according to the job 

sequence. The new job can enter the production only 

when there are available station (𝑐1 ≤ 𝑡) and mold 

(𝜒(𝐽𝑗 , 𝑡) > 0), besides, the production line is not fully 

loaded (𝐵(𝑡) > 0).  
 

The model 

Objective function (𝑍1) of the assignment problem is: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 = 𝜔1 ∙ 𝑍2 + 𝜔2 ∙ ∑ {∑ ∑ 𝑊(𝑂𝑖, 𝐽𝑗 ,𝑀𝑘) + 𝐼(𝑀𝑘)𝐽𝑗𝑂𝑖 }𝑀𝑘  (5) 

 

where 𝜔1 + 𝜔2 = 1; the second part refers to the station 

idle time. 
 

Objective function (𝑍2) of the scheduling problem is: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍2 = 𝜔3 ∙ 𝑇 + 𝜔4 ∙ ∑ {𝛼(𝐽𝑗) ∙ 𝑀𝑎𝑥(0, 𝐸𝑇𝑎(𝐽𝑗) −𝐽𝑗

𝑇)+ 𝛽(𝐽𝑗) ∙ 𝑀𝑎𝑥 (0,𝑇 − 𝐸𝑇𝑏(𝐽𝑗))}  (6) 

 

where 𝜔3 + 𝜔4 = 1; the first part is the accumulated 

completion time and the second part is the earliness and 

tardiness (E/T) penalty for the JIT criterion. 

The model subjects to the following constraints: 
 

 ∑ 𝑥(𝑂𝑖 , 𝑀𝑘)𝑀𝑘
≥ 1 (7) 

 

 ∑ 𝑥(𝑂𝑖 , 𝑀𝑘)𝑂𝑖
≥ 1 (8) 

 

Equation (7) means that at least one station should 

perform the operation and Equation (8) means that each 

station should at least process one operation. 
 

The solving approach 
Generally, to solve the assignment and scheduling 

problems in FJSSP, there are two types of approaches: 

hierarchical and integrated [26]. In the former approach, 

the two problems are solved independently. In contrast, 

the integrated approach solves the two problems 

dependently. Chan et al. [27] developed such an 

integrated approach to solving the FJSSP under resource 

constraints. The objective function of the assignment 

problem in their work is a weighted function of the 

makespan which is the objective of the sequencing 

problem and the machine idle cost. They solved the 

assignment problem and the sequencing problem 

iteratively. Similarly, this study will also develop an 

integrated approach to solve the developed model. 
 

Because the developed model cannot be solved by 

classical optimization approaches, a simulation-based GA 

approach is applied. GA is one of the popularly used 

meta-heuristics to solve scheduling problems [28]. GA is 

inspired by Charles Darwin’s theory of natural evolution. 

The algorithm reflects the process of natural selection 

where the fittest individuals are selected for reproduction 

in order to produce offspring of the next generation. Five 

phases are considered in a GA, they are initial population, 

fitness function, selection, crossover and mutation. The 

process begins with a set of individuals which is called a 

population. Each individual is a potential solution of the 

problem. An individual is characterized by a set of 

parameters (variables) known as genes. Genes are joined 

into a string to form a chromosome. The fitness function 

determines how fit an individual is. It gives a fitness score 

to each individual. The probability that an individual will 

be selected for reproduction is based on its fitness score. 
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The idea of selection phase is to select the fittest 

individuals and let them pass their genes to the next 

generation. Offspring are created by crossover and 

mutation methods. Crossover is the most significant 

phase in a GA. Mutation occurs to maintain diversity 

within the population and prevent premature 

convergence. 
 

The assignment problem and the scheduling problem are 

solved by separate GAs. If the generated chromosome for 

the assignment problem is feasible, we will continue to 

calculate its fitness by solving the scheduling problem. 

The fitness values are obtained by running a production 

simulation. The simulation module is one part of the GA 

as fitness function. It will return the makespan, the E/T 

penalty and the station idle time for each GA individual. 

The evolutionary process of the approach is represented 

in Figure 4. Details of each step are discussed below. 

Generate initial pool up to 
the population size

Scheduling problem

Select
Crossover
Mutation

Terminate?

End

Assignment problem Scheduling problem

Generate initial pool up to 
the population size

Use simulation to calculate 
the fitness values

Select
Crossover
Mutation

Feasible?

Feasible? Feasible?

Terminate?

Elitist replace Elitist replace

Feasible?

Yes

No

Yes

No

YesYes

No

No

No

Yes Yes

Return the best scheduling 
solution and the corresponding 

fitness values

No

Scheduling problem
Use simulation to calculate 

the fitness values

Start

Encode Encode

 

 

Assignment problem 

The assignment problem is the outside loop.  

 

Encode 
To successfully implement GA, solutions should be 

encoded into a chromosome structure. Solutions for the 

assignment problem can be defined as a 𝑜 ×𝑚 matrix: 

𝑋 = (
𝑥(1,1) ⋯ 𝑥(1,𝑚)

⋮ 𝑥(𝑂𝑖 , 𝑀𝑘) ⋮

𝑥(𝑜, 1) ⋯ 𝑥(𝑜,𝑚)
) 

where 𝑥(𝑂𝑖 , 𝑀𝑘) is a binary gene with a value of either 0 

or 1. If 𝑥(𝑂𝑖 ,𝑀𝑘) = 1, it means that station 𝑀𝑘 can 

process operation 𝑂𝑖. In addition, 𝑥(𝑂𝑖 ,𝑀𝑘) subjects to 

the constraints represented by Equations (7) and (8). If the 

chromosome is infeasible, it will be corrected by altering 

one gene randomly from 0 to 1 to meet the minimum 

requirement. 

 

Initialize population 
A set of initial solutions are generated randomly.  

 

Select 
Selection is made based on the fitness values. A 

chromosome that has a higher fitness value has a bigger 

chance of survival. A Roulette-wheel method is adopted 

for selection. Roulette-wheel selection is known as fitness 

proportionate selection. The probability of selection could 

be imagined to a Roulette wheel in a casino. Usually a 

proportion of the wheel is assigned to each of the possible 

selections. Then a random selection by rotating the 

Roulette wheel. 

 

Crossover 
The crossover operator produces the next generation by 

exchanging partial information from parents. Figure 5 

shows the crossover schema. A random column cut point 

is generated. Then, a portion of the parents is exchanged 

according to this cut point. 

 

 
 

 
 

Mutate 
The mutation operator alters the values of genes in the 

chromosome generated from the crossover operator. 

Figure 6 shows the mutation schema. A number 
 Figure 4. Process of the simulation-based genetic algorithm 

Figure 5. Crossover schema for station assignment 
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𝑟1(1 ≤ 𝑟1 ≤ 6) is randomly generated. Then, the 

following procedure is repeated for 𝑟1  times: randomly 

select a gene and alter its value from 0 to 1, or vice versa. 

 

 

 
 

Elitist replace 
Elitist replacement involves copying a small portion of 

the fittest candidates, unchanged, into the next generation, 

while the remaining portion is randomly generated. 

 

Scheduling problem 

The scheduling problem is embedded inside the 

assignment problem, solving which gives the fitness 

values for both problems. In the GA for the scheduling 

problem, the initial population creation, Roulette-wheel 

selection, and the elitist replacement are the same as those 

in the GA for the assignment problem. Below discusses 

their difference. 

 

Encode 
The scheduling problem is encoded by a preference list-

based representation [29]. It can be defined as a 𝑚 × 𝑛 

matrix: 

𝑌 = (

𝑦(1,1) ⋯ 𝑦(1, 𝑛)

⋮ 𝑦(𝑀𝑘 , 𝑟) ⋮

𝑦(𝑚, 1) ⋯ 𝑦(𝑚, 𝑛)
) 

where each matrix row corresponds to a station. 𝑀𝑘 

denotes the station index. 𝑟 refers to a sequence location 

within the preference list. It increments from 1 to 𝑛 along 

the column axis. 𝑦(𝑀𝑘, 𝑟) is a job index. For example, let 

𝑦(𝑀𝑘 , 𝑟1) = 𝐽𝑎 and 𝑦(𝑀𝑘, 𝑟2) = 𝐽𝑏. If 𝑟1 < 𝑟2 , it means 

that 𝐽𝑎 will be preferred than 𝐽𝑏 on station 𝑀𝑘. Rather than 

strictly controlling the job processing orders, the 

representation scheme allows available jobs with higher 

priorities in the list to be processed first.  

 

Simulation 
Figure 7 gives an example with eight stations, four 

operations, and three jobs, to show how to deduce an 

actual schedule from the given chromosomes. From the 

preference lists for the stations, one can deduce the 

schedulable preferential operations according to the given 

operation precedence constraints. The core simulation 

principle is as follows: When a station is free, it will 

request a job. Those executable jobs will compete for the 

station. But the one with the highest rank in the preference 

list of that station will win. For example, in the case, for 

stations M1 and M2, the first winners are jobs J1 and J2, 

respectively. However, because the start of the first 

operation also depends on mold availability and 

production capacity, if J1 is waiting for its mold, the next 

preferential job will be J3 according to the preference list, 

and so on.  

 

𝑋 = (

1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

) 

 

𝑦 =

(

 
 
 
 
 

𝐽1 𝐽3 𝐽2
𝐽2 𝐽3 𝐽1
𝐽3 𝐽1 𝐽2
𝐽1 𝐽2 𝐽3
𝐽1 𝐽2 𝐽3
𝐽1 𝐽2 𝐽3
𝐽1 𝐽3 𝐽2
𝐽2 𝐽3 𝐽1)

 
 
 
 
 

 

 

M1
(J1,J3,J2)

M2
(J2,J3,J1)

M5
(J1,J2,J3)

M6
(J1,J2,J3)

M3
(J3,J1,J2)

M4
(J1,J2,J3)

M7
(J1,J3,J2)

M8
(J2,J3,J1)

O1

O2

O3

O4

 
 

Station Job schedule 

M1 J1 J3    

M2 J2     

M3  J2 J3   

M4   J1 J3  

M5   J2   

M6    J1  

M7  J1   J3 

M8    J2  

 

 
 

Evaluation functions 
Equations (5) and (6), which are weighted sums of two 

criteria, are used as fitness functions. But the two criteria 

in the fitness function may not be of the same magnitude 

in some cases, perhaps the contribution of one criterion is 

dominated by another. In this regard, it is suggested to 

normalize them in order to handle the two criteria equally 

[30]. However, the scalar weight factors are likely to be 

problem-dependent and it is not easy to choose their 

proper values. The following linear equation is used to 

normalize each criterion in the fitness functions. 

 

 𝑓𝑚 = {

1 𝑚 > 𝑚𝑏
𝑚−𝑚𝑎

𝑚𝑏−𝑚𝑎
𝑚𝑎 < 𝑚 ≤ 𝑚𝑏

0 𝑚 ≤ 𝑚𝑎

 (9) 

 

Parent ൭
𝑉1 𝑉2 𝑉3
𝑉4 𝑉5 𝑉6
𝑉7 𝑉8 𝑉9

൱             Child ൭
𝑉1 1 − 𝑉2 𝑉3

1 − 𝑉4 𝑉5 𝑉6
𝑉7 𝑉8 𝑉9

൱ 

 

Figure 6. Mutation schema for station assignment 

Figure 7. An example with eight stations, four 

operations, and three jobs 
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 𝑓𝑡 = {

1 𝑡 > 𝑡𝑏
𝑡−𝑡𝑎

𝑡𝑏−𝑡𝑎
𝑡𝑎 < 𝑡 ≤ 𝑡𝑏

0 𝑡 ≤ 𝑡𝑎

 (10) 

 

where m and t denote the values of the two criteria, 

respectively; ma and ta denote the minimum values 

obtained by using a single objective GA search; and mb 

and tb denote the maximum values from the single-

objective GA. Therefore, the fitness function can be 

represented as Equation (11) 

 

 𝑓 = 𝜔𝑚 ∙ 𝑓𝑚 +𝜔𝑡 ∙ 𝑓𝑡  (11) 

 

where 𝜔𝑚 is a random real number over the closed 

interval [0, 1]; and 𝜔𝑡 = 1 −𝜔𝑚. 

 

Crossover 
Two parents are selected, and a single point crossover is 

applied between them. As Figure 8 shows, the crossover 

point is placed between job 𝐽1 and job 𝐽2. Then, the child 

inherits the sequences of job 𝐽1 from Parent A. The 

remaining blanks in the child are filled by referring to the 

unselected jobs (i.e., job 𝐽2 and job 𝐽3) in Parent B.  

 

 

 
 

Mutate 
Figure 9 shows the mutation schema. The sequences of 

two randomly selected jobs in one row are interchanged. 

 

 

 
 

Experimental case study 
The proposed algorithm was coded in C# language and 

tested on a laptop computer. In this section, a test problem 

will be employed to examine the performance of the 

proposed algorithm.  

 

Table 1 presents the production data of the test problem 

which comprises 10 precast concrete element types and 3 

mold types. The data was adapted from Benjaoran et al. 

[31], in which O1 (setting mold), O2 (placing 

reinforcement), O5 (demolding), and O6 (finishing) are 

manual operations and performed on flexible stations, 

while O3 (casting) and O4 (curing) are automated 

operations and performed by casting machines and curing 

chambers, respectively. Besides, the normal working 

hours per day is 8 hours, and the maximum overtime for 

casting per workday is 4 hours. This sample data was also 

used by other researchers to test their developed 

algorithms, such as Ko and Wang [15]. 

 

Because O4 (curing) automatically starts without workers 

after O3 (casting). O3 and O4 can be deemed as one group. 

Besides, the stations for O3 and O4 are not flexible for the 

other operations. As a result, their corresponding gene 

values in the chromosome of the assignment problem are 

fixed to be “1”. Assuming a six-station scenario where 

there are four flexible stations that can perform any 

operations and two nonflexible stations that are reserved 

for O3 and O4, the chromosome structure of the 

assignment problem will be: 

 

𝑋 =

(

 
 

𝑥 𝑥 𝑥 𝑥 0 0
𝑥 𝑥 𝑥 𝑥 0 0
0 0 0 0 1 1
𝑥 𝑥 𝑥 𝑥 0 0
𝑥 𝑥 𝑥 𝑥 0 0)

 
 

𝑂1
𝑂2
𝑂3, 𝑂4
𝑂5
𝑂6

 

 

in which x denotes a binary value.  

 

The related GA parameter settings are as follows: The 

crossover rate is 0.95, the mutation rate is 0.2, and the 

elitist ratio is 0.25. These parameters were determined 

according to the results from previous studies [32-34] 

through a trial and error approach. Solution quality and 

computational time are usually positively correlated. 

However, the computational cost associated with an 

integrated and iterative approach can be very huge. In this 

regard, the compromised goal becomes to generate 

solutions in a relatively reasonable computational time. 

One can decide the choice of the appropriate population 

size and generations also using a trial and error approach.  

 

Table 2 compares the solutions under different population 

size and iteration times. One can see that a smaller 

population over shorter generations gives the same 

makespan results as using a bigger population over longer 

generations. Even for the E/T penalty and the station idle 

time, the difference is not significant. Hence, we 

recommend using a smaller population and multiple 

isolated shorter runs. We pick up the individual who 

receives the best fitness value as the final solution for the 

problem. The use of multiple smaller runs is also 

recommended by the results of many empirical studies as 

the savings on execution time seems marginal when 

compared to a single longer run [35]. Finally, evolution 

over 100 generations with population size 20 was 

executed and repeated 10 times in the following 

Parent A ൭
𝑱𝟏 𝐽2 𝐽3
𝑱𝟏 𝐽3 𝐽2
𝐽3 𝐽2 𝑱𝟏

൱                  

Parent B ൭
𝐽3 𝐽1 𝐽2
𝐽1 𝐽2 𝐽3
𝐽2 𝐽1 𝐽3

൱              Child ൭
𝐽1 𝐽3 𝐽2
𝐽1 𝐽2 𝐽3
𝐽2 𝐽3 𝐽1

൱ 

Figure 8. Crossover schema for job sequence 

Parent ൭
𝐽1 𝑱𝟐 𝑱𝟑
𝐽1 𝐽3 𝐽2
𝐽3 𝐽2 𝐽1

൱             Child ൭
𝐽1 𝐽3 𝐽2
𝐽1 𝐽3 𝐽2
𝐽3 𝐽2 𝐽1

൱ 

Figure 9. Mutation schema for job sequence 
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experiments considering the balance between solution 

quality and computational effort.  

 

Using a single-objective GA (either the makespan, or the 

E/T penalty, or the station idle time), the possible 

minimum and maximum values of the three objectives 

(i.e., the makespan, the E/T penalty and the station idle 

time) can be obtained, as shown in Table 3, which will be 

used to normalize the fitness values in the multi-objective 

GA. Table 4 provides the optimal results using the multi-

objective GA. The corresponding weights were randomly 

generated. Playing with the weights one can generate 

different Pareto optimal solutions as required. 

 

Figure 10 shows different schedules with and without 

resource constraints. On the one hand, Figure 10(a) and 

Figure 10(c) show the cases with sufficient mold supply, 

which means molds are always available whenever they 

are wanted. Therefore, new jobs can immediately start 

their first operations when the relevant stations become 

empty. On the other hand, Figure 10(b) shows the case 

without sufficient mold supply. In this regard, the start of 

new jobs is constrained by not only the availability of the 

stations but also the availability of the molds. In Figure 

10(a) and Figure 10(b), there are four flexible stations and 

two nonflexible stations. In Figure 10(c) there are three 

flexible stations and three nonflexible stations. The 

flexible stations can perform O1 (setting mold), O2 

(placing reinforcement), O5 (demolding) or O6 

(finishing) while the nonflexible stations can only 

perform O3 & O4 (casting and curing). Storage capacity 

is unlimited. The 10 jobs circulate around different 

stations according to their operation sequences, 

respectively. The obtained minimum makespan in Figure 

10(a) is 121.6 hours, in Figure 10(b) is also 121.6 hours, 

in Figure 10(c) is 96.8 hours. 

 

The main finding by comparing the cases of different 

flexible stations with and without enough mold supply is 

that a small supply of flexible stations and molds do not 

necessarily lead to longer makespan, sometimes, even 

gives better results as Figure 10(a) and Figure 10(c) 

demonstrate. The reason is due to the assumption applied 

in the model that one job immediately starts operation 

when station is available. As a result, more new jobs may 

be invited when there are more flexible stations which can 

perform the first operations of the jobs. The increased 

number of jobs that are concurrently in the system is 

likely to cause more waiting wastes. One can see that 

there are more jobs in the storage in Figure 10(a) since the 

nonflexible stations become bottlenecks when there are 

more jobs concurrently in the system and less nonflexible 

stations provided than in Figure 10(c). Therefore, it is 

suggested to run different combinations in order to find 

the best one. 

We further take a closer look to the schedule presented in 

Figure 10(b). Its corresponding optimal solution are given 

as below: 

𝑋 =

(

 
 

0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
1 0 1 0 0 0)

 
 

𝑂1
𝑂2
𝑂3,4
𝑂5
𝑂6

 

𝑌 =

(

  
 

8 1 4 6 2 3 5 9 7 10
1 5 4 2 9 3 10 7 6 8
6 10 4 1 2 5 9 3 7 8
4 7 2 8 6 1 5 3 9 10
8 2 3 1 10 4 7 5 9 6
4 2 6 9 1 5 10 3 7 8 )

  
 

𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6

 

 

Despite of the same makespan as Figure 10(a), the 

detailed schedules are different. Mold availability is the 

same important as station availability. In Figure 10(b), the 

new job will not start until its mold is available when one 

job that uses the same mold has finished all operations 

and left the production system. For example, according to 

the job preference list of Station 3, Job 4 and Job 1 can 

start earlier than Job 2. However, because Job 4 and Job 

1 need to use Mold A, they must wait for it until Job 6 has 

finished using it. Consequently, Job 2 which uses Mold B 

is awarded the priority.  

 

Table 1. Production data 

Job 

ID 
Mold 

Processing time (hours) Due 

dates 

(hours) 

Penalty rate per 

hour 

O1 O2 O3
1 O4

1 O5 O6 Earliness Tardiness 

1 A 2 1.6 2.4 12 2.5 1 112 2 10 

2 B 3.4 4 4 12 2.4 5 112 2 10 

3 A 0.8 1 1.2 12 0.8 0 112 1 10 

4 A 0.6 0.8 1 12 0.6 2 112 1 10 

5 C 3 3.6 2.4 12 2.4 3 208 2 10 

6 A 3 3.2 3 12 3 1.6 128 2 10 

7 C 1.3 0.9 2.4 12 1.9 1.8 144 2 10 

8 B 1.7 1.4 1.1 12 0.9 0.7 144 2 20 

9 A 2.2 1.8 1.2 12 2.3 0.7 144 1 20 

10 C 1.6 3.2 2.3 12 2.1 2.7 240 1 20 
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Table 2. Results of using different population sizes over different iteration times 

Population size Generation 
Makespan 

(hours) 

CPU time 

(seconds) 

E/T penalty 

(units) 

CPU time 

(seconds) 

Station idle 

time 

(hours) 

CPU time 

(seconds) 

20 20 121.6 99 534.6 98 3.2 99 

20 50 121.6 621 467.1 624 3.2 639 

20 100 121.6 2478 397.5 2494 3.2 2547 

50 50 121.6 4141 413.6 4107 3.2 4152 

50 100 121.6 16222 397.5 16441 3.2 16131 

100 50 121.6 18106 397.5 18062 3.2 18207 

100 100 121.6 74397 397.5 74409 3.2 74458 

 

Table 3. Results of 10 attempts using single-objective GA 

Attempt 

Makespan 

(hours) 

E/T penalty 

(units) 

Station idle time 

(hours) 

Min 
CPU time 

(seconds) 
Max 

CPU time 

(seconds) 
Min 

CPU time 

(seconds) 
Max 

CPU time 

(seconds) 
Min 

CPU time 

(seconds) 
Max 

CPU time 

(seconds) 

1st 121.6 2502 246.3 2489 397.5 2521 7776.7 2520 3.2 2512 742.7 2503 

2nd 121.6 2545 246.3 2540 397.5 2498 7813.3 2518 3.2 2528 759.3 2526 

3rd 121.6 2490 246.3 2525 397.5 2501 7813.3 2503 3.2 2517 759.3 2506 

4th 121.6 2511 245.4 2499 397.5 2534 7776.7 2529 3.2 2524 759.3 2534 

5th 121.6 2513 246.3 2517 397.5 2499 7776.7 2542 3.2 2531 759.3 2522 

6th 121.6 2503 246.3 2524 397.5 2547 7776.7 2534 3.2 2523 759.3 2517 

7th 121.6 2489 245.4 2533 397.5 2519 7777.4 2527 3.2 2511 759.3 2533 

8th 121.6 2508 245.4 2528 397.5 2488 7776.7 2536 3.2 2541 745.1 2529 

9th 121.6 2522 246.3 2496 397.5 2533 7813.3 2528 3.2 2533 745.1 2492 

10th 121.6 2536 245.4 2512 397.5 2526 7813.3 2535 3.2 2528 758.8 2530 

Best 121.6  246.3  397.5  7813.3  3.2  759.3  

 

Table 4. Optimal results using multi-objective GA 

Index ω1 ω2 ω3 ω4 
Makespan 

(hours) 

E/T penalty 

(units) 

Station idle time 

(hours) 

Assignment objective 

(units) 

Scheduling objective 

(units) 

1 0.01 0.99 0.77 0.23 126.1 831.2 7.7 0.006305 0.041238 

2 0.14 0.86 0.09 0.91 127.9 827.3 3.7 0.008589 0.057288 

3 0.17 0.83 0.33 0.67 126.2 837.2 6.2 0.012116 0.051899 

4 0.23 0.77 0.86 0.14 125.4 897.2 7 0.012067 0.035641 

5 0.36 0.64 0.46 0.54 126.4 790.1 6.2 0.019205 0.046295 

6 0.46 0.54 0.24 0.76 127.8 773.6 7 0.025933 0.050477 

7 0.57 0.43 0.02 0.98 148.8 677 3.2 0.023540 0.041298 

8 0.58 0.42 0.29 0.71 127 769 6.7 0.029857 0.048126 

9 0.63 0.37 0.22 0.78 127.5 762.2 6.5 0.032339 0.048768 

10 0.68 0.32 0.98 0.02 125.4 890.1 8.5 0.023454 0.031192 

11 0.71 0.29 0.55 0.45 126.2 795.1 8.2 0.033453 0.044416 

12 0.87 0.13 0.28 0.72 126.6 771.4 8.8 0.042313 0.047529 

13 0.89 0.11 0.12 0,98 125.6 852 62.2 0.060011 0.057783 

14 0.90 0.10 0.73 0.27 121.7 915 31.2 0.021187 0.019427 

15 0.99 0.01 0.71 0.29 121.7 906 67.2 0.021096 0.020455 
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(a) 

 
(b) 
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(c) 

 
 

Conclusions 
This study established a practical production model based 

on the flexible job shop scheduling model for the semi-

automated production status in current precast concrete 

factories. The model consists of two sub-problems: the 

assignment problem which assigns operations to each 

station such that a station is dedicated to a set of 

operations; and the scheduling problem which selects 

stations to process certain operations out of the set and 

determines the processing order of jobs on each station. 

The assignment problem and the scheduling problem are 

solved using an integrated approach. A multi-objective 

GA is applied to search for the best assignment plan with 

minimum makespan and station idle time. For every 

assignment plan, another multi-objective GA is applied to 

search for the best scheduling plan with minimum 

makespan and earliness and tardiness penalty.  

 

Although a fully automated production line is the ideal 

state, most precast concrete factories have yet to be 

developed to that stage. From many factory tours, it is 

found that semi-automated production lines are popularly 

used. The semi-automated production line combines 

human labor and automation. Compared to the fully 

automated one, it has more flexibility that one station can 

perform multiple operations, whereby in addition to a 

schedule, an operation assignment plan is also required. 

Therefore, the production planning problem is formulated 

into an FJSSP model, an extension of the classical JSSP 

model. 

 

An example was applied to validate the integrated GA 

approach. The experimental results show that the 

developed GA approach is a useful and effective method 

for solving the problem that it can return high-quality 

solutions. Usually, the computational cost associated with 

an integrated and iterative approach is very huge. So, for 

further study, additional experiments on real situations 

with different input data sizes should be conducted in 

order to arrive at a more definite conclusion on the 

efficacy of the developed GA approach in solving the 

FJSSP for semi-automated precast concrete production 

planning. Furthermore, we wish to develop an active 

scheduling system which can propose actions to users 

automatically when changes are required based on an 

agent-based system. 

 

Figure 10. Minimum makespan schedule: (a) four flexible stations; (b) one mold for each mold type; (c) three flexible 

stations 
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