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ABSTRACT 

An important aspect of the conceptual design is at the customer requirement definition 

stage, where an optimal number of functional requirements are specified with the 

application of quality function deployment. To facilitate a systematic specification of 

functional requirements, state-of-the-art unsupervised machine learning techniques 

will be introduced in the feature selection of functional requirements. However, the 

scarcity of references on unsupervised feature selection in the literature reflects the 

difficulty associated with this topic. At the customer requirement definition phase, 

three techniques will be proposed for selecting functional requirements, namely: (a) 

principal component analysis, (b) forward orthogonal search, and (c) Kohonen self-

organizing map neural network. These machine learning feature selection techniques 

address the limitations of current approaches in systematically determining the 

minimum functional requirements from the mapping of customer requirements in 

quality function deployment. When applied to the conceptual design of the 

transportable automated wood wall framing machine that is under development at the 

University of Alberta, the proposed feature selection techniques have been observed 

to be: (i) fast, (ii) amenable to small quality function deployment dataset, and (iii) 

adequate in realizing design objectives. The results presented in this paper can be 

easily extended to online determination of customer requirements and functional 

requirements, project management, contract management, and marketing. 
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Introduction 
Defining customer needs and determining the minimum 

functional requirements (FRs) constitute the first and 

crucial step in conceptual design [1]. Quality function 

deployment (QFD), a methodology that originated in 

Japan, is used by the product development team in this 

initial phase of conceptual design to identify customer 

needs and to evaluate the influence of a product or service 

in achieving these needs [2]. A QFD matrix, which is a 

mapping of FRs and customer requirements (CRs), and 

the optimal or suboptimal selection of FRs are the desired 

outcomes of the product development team’s 

collaboration in this phase. Each entry to this QFD matrix 

consists of a weighting factor that signifies the strength of 

relationship between a FR and a CR.   

Once a QFD matrix is built, decision-making tools are 

then used to determine the minimum number of FRs that 

will realize a suitable design. However, methods 

suggested in the literature such as analytical network 

program and fuzzy logic are difficult to use. The objective 

of this paper is to present unsupervised machine learning 

techniques as alternatives in overcoming the difficulties 

specified in the next section for current approaches. 

Shin and Kim [3] have applied factor analysis (FA), an 

unsupervised classical statistical method, with QFD to 

reduce the dimension of the FRs mapped from the CRs in 

QFD. Dimension reduction pertains to reducing the order 

of a model by grouping features or attributes, whereas 

feature selection refers to excluding the least important 

features from the model. As subsequently discussed 

further below, integrating feature selection with QFD is 

proposed in this paper to reduce the design complexity 

that is associated with satisfying a large set of FRs [4]. To 

address the limitation of FA in feature selection, this 

paper will leverage unsupervised machine learning 

techniques in systematically determining the minimum 

FRs from the mapping of CRs in QFD.  

Based on the notion that a product design team must not 

be constrained to using only one technique at the 

customer requirement definition phase of conceptual 

design, a comprehensive set of unsupervised machine 

learning methods will be described in detail. Respecting 

this notion, the paper will be structured as follows: section 

2 provides a literature review that addresses the 

limitations of current state-of-the-art techniques through 

the introduction of unsupervised machine learning 

methods; section 3 discusses the motivation, and detailed 

description of the proposed machine techniques, and 

algorithms; section 4 describes the application of the 

algorithms to the QFD of an automated wood wall 

framing machine and the validation of the results, 

followed by the conclusion in section 5. 

Literature Review 
The current state-of-the-art rating of the importance of 

FRs is achieved using techniques such as analytical 

network process (ANP), FA, fuzzy logic (FL), and 

principal component analysis (PCA). Karsak et al. [5] 

have used ANP to rank the FRs and zero-one goal 

programming to determine the FRs to consider in 

designing the product. Mazurek and Kiszová [6] highlight 

two disadvantages of ANP: (1) obtaining the correct 

network structure is difficult, and (2) forming the 

supermatrix by pair-wise comparison of all criteria is 

difficult and unnatural.  

 

To overcome the difficulties associated with the use of 

ANP, Mazurek and Kiszová [6] suggest the application of 

FL. This approach that utilizes ANP and fuzzy QFD has 

been used by Zaim et al. [7] in developing an improved 

product for systematically ranking FRs on the basis of 

CRs. Other applications of ANP and FL include: landfill 

site selection [8], shipyard site location [9], and 

importance ranking of the factors involved in a SWOT 

(strengths, weaknesses, opportunities and threats) 

analysis for the airline industry. However, the 

requirement prioritization through FL of these 

applications is prone to error due to its reliance on experts 

[10].  

 

Shin and Kim [3] have introduced FA to restructure QFD. 

An interesting method that combines FA and ANP has 

been described by Zebardast [11] for determining social 

vulnerability to earthquake hazards. FA is a classical 

statistical technique that does not have the difficulties 

encountered in ANP or fuzzy logic, but Subbaiah et al. [2] 

give preference to PCA over FA due to the weakness of 

the latter in handling strongly correlated requirements. 

Weber et al. [12] have explored PCA in features 

prioritization of an airport, but, for feature selection, they 

have not used this state-of-the-art machine learning 

technique to establish the criteria for determining the 

optimum number of FRs. 

 

PCA is an unsupervised machine learning technique that 

has been used so far for evaluating the importance of FRs 

to satisfy customer expectations. Although unsupervised 

machine learning techniques, such as forward orthogonal 

search [13] and self-organizing map [14], have been used 

for feature selection, they have yet to be introduced to the 

literature for the optimum selection of FRs in QFD. Thus, 

this paper contributes towards the application and 

evaluation of state-of-the-art machine learning 

approaches to a systematic customer requirement 

definition in the conceptual design of automated 

construction machines. 

 

Unsupervised machine learning methods circumvent the 

aforementioned problems associated with ANP, FA, and 

FL. Moreover, these methods significantly simplify the 
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FR selection process by directly applying them to QFD, 

which is nothing but a dataset of FRs and CRs. Suitable 

choice of learning algorithms in this paper has been 

mainly reduced to PCA, forward orthogonal search, and 

self-organizing map neural network due to their reported 

applicability to feature selection. PCA has been used to 

evaluate machine defects [15]. Successful application of 

forward orthogonal search has been reported for datasets 

involving diagnostic breast cancer, cardiac arrythmia, 

ionosphere, and forest cover types [13]. Since its 

introduction by Professor Kohonen in 1982 [16], self-

organizing map neural network has been utilized in such 

feature selection applications as the detection of 

arrythmias from electrocardiographic (ECG) signals [17] 

and the discovery of patterns in seismic wavefields [18]. 

 

Feature Selection Using Machine Learning 

Techniques 
 

Motivation 

Conceptual design is initiated by identifying CRs, a 

necessary step prior to any design methodology such as 

that of the integrated conceptual design described in a 

study by Tamayo et al. [19]. This is the most critical stage 

of conceptual design since correctly identifying the CRs 

defines the FRs that make up the design intent of the 

project. QFD is the methodology used by the product 

design team to evaluate the significance of FRs that 

achieve these CRs. Degrees of significance are assigned 

values such as 1 (weak significance), 3 (medium 

significance), and 9 (strong significance) [3]. An example 

of a QFD matrix is illustrated in Table 1, where m and n 

indicate the total number of CRs and FRs, respectively. 

This m×n QFD matrix will be denoted as the dataset 

matrix X consisting of n columns of features or FRs. 

 

The complexity of the system increases with the increase 

in the number of FRs as expressed in terms of the 

probability of achieving the highest FRs, which diminish 

with larger n [4]: 
 

 P=1/n! (1) 
 

Equation (1) suggests the use of minimum number of FRs 

to increase the probability of finding the right DPs to 

satisfy n FRs at the axiomatic design (AD) stage and thus 

reduce the complexity of the design. Selecting a near 

optimum number of FRs is accomplished at the CR 

definition stage using the feature selection techniques 

discussed below. 

 

Table 1. Typical QFD 

 FR
1

 FR
2

 FR
3

 FR
4

 FR
5

 ... FR
n

 

 CR
1

 9 
 

1 
 

9 
  

 CR
2

  3      

 CR
3

 1  9 3 3   

 CR
4

   3 3 1   

 CR
5

   3 3 1   

 CR
6

 9  1  9   

 CR
7

     9   

 CR
8

 3      9 

 ⋮ ... ... ... ... ...  ... 

 CR
m

   1 9 3   

 

Selecting the minimum number of FRs is accomplished 

by retaining the p number of FRs that adequately satisfy 

the CRs in the QFD matrix and exclude the least 

significant FRs. Approaches to determining p include 

[20]: (i) filter, and (ii) wrapper models. A simple method 

of determining p is by setting a threshold in the 

cumulative of the percent explained variances versus the 

retained number of FRs.  

Figure 1 describes the general block diagram of an 

unsupervised learning process for feature selection, which 

takes a full QFD matrix in as the dataset 𝑋 ∈ ℝ𝑚×𝑛 and 

outputs a reduced QFD matrix �̂� ∈ ℝ𝑚×𝑝. A description 

of the process block in Figure 1 is illustrated in detail for 

each of the proposed unsupervised machine learning 

algorithms in the following sections. 

 

 

 
 

 

 

Figure 1. General input-output block diagram of 

unsupervised machine learning process 
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Principal Component Analysis 

Figure 1 is redrawn in Figure 2 to represent the 

unsupervised feature selection that makes use of PCA. 

Notations commonly used in chemometrics will be 

adopted in the following derivations [21]. PCA is a model 

of the form: 

 X=�̂� +E  

    =TPT+E (2) 
 

where �̂� is the 𝑚 × 𝑛 reconstructed dataset that 

approximates 𝑋 and that is expressed as the product of the 

scores matrix, 𝑇 ∈ ℝ𝑚×𝑞. and the loadings matrix, 𝑃 ∈

ℝ{𝑞×𝑛). Scores matrix 𝑇 projections of the original 

features onto the principal components. 𝐸 is the 

reconstruction error introduced in approximating the 

dataset. 

 

 
 

In multi-dimensional data, the solution to minimizing the 

reconstruction error is obtained from Equation (4) [22].  

𝑇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑇∈ℝ𝑛

‖𝑋 − 𝑇𝑃𝑇‖2 

(3) 

= 𝑋𝑃 

Forming the singular decomposition of X with respect to 

a diagonal matrix Σ, and orthogonal matrices 𝑈 and 𝑉 

such that 𝑈𝑈𝑇 = 𝐼 and 𝑉𝑉𝑇 = 𝐼: 

𝑋 = 𝑈𝛴𝑉𝑇 (4) 

 

Loadings matrix 𝑃 is determined by minimizing the 

reconstruction error as in the study by Hastie et al. (2009): 

𝑃 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑃∈ℝ𝑛

‖𝑋 − 𝑋𝑃𝑃𝑇‖2 (5) 

Equation (5) indicates that 𝑃 = 𝑉 since 𝑃𝑃𝑇 is the 

orthogonal projection of 𝑋 onto the subspace spanned by 

the columns of 𝑉. Thus, the loadings, scores, and 

reconstructed dataset are derived through the singular 

value decomposition of X as follows: 

𝑃 = 𝑉 (6) 

𝑇 = 𝑈𝛴 (7) 

�̂� = 𝑋𝑉𝑉𝑇 (8) 

The expected value of the reconstruction error or mean 

squares error (MSE) is calculated as the sum of the minor 

eigenvalues: 

𝑀𝑆𝐸(𝑞) = ∑ 𝜆𝑖

𝑛

𝑖=𝑞+1

 (9) 

The MSE for different values of q principal components 

and setting a threshold MSE is what determines the 

optimum number of principal components 𝑞∗. 

 

PCA is normally used for feature extraction. However, 

Song et al. [24] have shown that PCA can also serve the 

purpose of feature selection. Since PCs are automatically 

ranked when singular value decomposition (SVD) is 

used, for feature selection, the 𝑞∗- dimensional 𝑃 and 𝑇 

matrices are derived by determining the eigenvectors and 

eigenvalues from the covariance matrix: 

𝐶𝑋 =
1

𝑚 − 1
𝑋𝑋𝑇 (10) 

𝐶𝑋𝑝𝑖 = 𝜆𝑖𝑝𝑖 (11) 

where 𝑝𝑖  is the ith column eigenvector of the loadings 

matrix 𝑃 and 𝜆𝑖 is the associated eigenvalue. Importance 

of each feature is obtained by the magnitude of each 

column eigenvector where the eigenvalue is maximum, 

i.e., each element of the first principal component, 

through Equation (12) [15]. Xu et al. [25] have observed 

that Equation (12) is valid when the maximum 

eigenvalue, 𝜆1, is significantly larger than the rest of the 

eigenvalues. 

𝑐𝑖 = |𝑝𝑖| 𝑓𝑜𝑟 𝑖 = 1: 𝑛 (12) 

A summary of the steps required to develop Algorithm 1 

[24] for feature selection using principal component 

analysis is presented below. 
 

 
Forward Orthogonal Search 

Because of its simplicity and its suitability to highly 

correlated QFD dataset, PCA is the first feature selection 

method to use. Two other techniques will be introduced 

that conform to a specific structure of the QFD matrix. 

Forward orthogonal search (FOS) [13], depicted in Figure 

3, is similar to PCA but it does not have the maximum 

eigenvalue restriction since its feature selection criterion 

is based on maximum squared-correlation coefficient and 

Figure 2. Feature selection by Principal Component 

Analysis 
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average sum of error reduction ratio. Equation (13) 

describes the model that approximates the original QFD 

matrix. 

𝑋 = �̂�𝜃 + 𝐸 

(13) 

    = 𝑄𝑅𝜃 + 𝐸 

where the selected number of features is 𝑞 < 𝑛; �̂� ∈
ℝ𝑚×𝑞 is orthogonally decomposed into orthogonal matrix 

𝑄 ∈ ℝ𝑚×𝑞; upper triangular matrix 𝑅 ∈ ℝ𝑞×𝑞; and 

parameter matrix 𝜏 ∈ ℝ𝑚×𝑛. 𝜃 ∈ ℝ𝑞  is the parameter 

vector. 

 

 
 

Algorithm 2 reflects the equations developed by Wei and 

Billings [13]. Thus, the function, 𝑠𝑐(𝑎𝑖 , 𝑏𝑗), that 

calculates the index of the maximum squared-correlation 

coefficients, 𝛾 ∈ ℝ𝑛, of two vectors 𝑎𝑖 and 𝑏𝑗 is 

determined as follows: 
 

𝛾𝑗 =
1

𝑛
∑

(𝑎𝑖
𝑇𝑏𝑗)

2

(𝑎𝑖
𝑇𝑎𝑖)(𝑏𝑗

𝑇𝑏𝑗)

𝑛

𝑖=1

 
(14) 

𝑙 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗∈[1,𝑛]

{𝛾𝑗} (15) 

 

Taking the column vectors of the normalized dataset, 𝑋, 

for both 𝑎𝑖 and 𝑏𝑗 in the sc function provides the first 

selected feature vector, 𝑥𝑙1
, in �̂�. �̃� represents the dataset 

that results from the removal of the feature vector, 𝑥𝑙1
, 

from X. In the subsequent steps, however, �̂� and �̃� are 

updated through 𝑠𝑐(𝑥𝑖 , 𝑞𝑗), where 𝑞𝑗 is obtained by 

applying the Gram-Schmidt orthogonalization function 

𝑜𝑟𝑡ℎ𝑜(𝑥�̃�, 𝑞𝑘), or 

𝑞𝑗 = �̃�𝑗 − ∑
(�̃�𝑗

𝑇𝑞𝑘)

𝑞𝑘
𝑇𝑞𝑘

𝑟−1

𝑘=1

𝑞𝑘 (16) 

 

The significance or importance of the selected feature is 

evaluated through the function 𝑝𝑒𝑟𝑓(𝑥𝑗 , 𝑞𝑘), such that: 

𝑆𝐸 =
1

𝑛
∑ ∑

(𝑥𝑗
𝑇𝑞𝑘)

2

(𝑥𝑖
𝑇𝑥𝑗)(𝑞𝑘

𝑇𝑞𝑘)
× 100

𝑟

𝑘=1

𝑛

𝑗=1

 (17) 

 

A summary of the steps required to develop Algorithm 2 

for feature selection using forward orthogonal search is 

presented below (see pseudo-code below). 

Self-organizing map neural network 

PCA and FOS are appropriate for linear feature selection; 

however, Kohonen self-organizing map (SOM) can be 

utilized for a QFD matrix exhibiting nonlinear 

relationships [26]. SOM has been used for clustering, data 

visualization, dimensionality reduction, and nonlinear 

data mapping, and its variants are too many to list [26]. 

Figure 4 illustrates the Kohonen two-dimensional SOM 

neural network that is used to model the QFD matrix at 

the CR definition stage. A strategy developed by Faro et 

al. [27] is adopted in this paper to automate the process of 

determining the number of classes with the use of a single 

layer SOM. A more detailed description of the general 

block diagram of Figure 1 is depicted in Figure 4 for SOM 

feature selection method that uses genetic algorithm. 

 

 

 

Similarity matrix, 𝑆 ∈ ℝ𝑚×𝑚, is used to avoid the 

difficulties associated with raw data in clustering [28]. In 

a study by Faro et al. [27], similarity matrix is calculated 

in Equation (18) then normalized before using it for 

classification. This equation describes the function sim(X) 

in the algorithm while Equation (19) describes the 

random weights initialization that is uniformly distributed 

between 0 and 1 in the function initw.  

𝑠𝑖𝑗 =
1

𝑛
∑ 𝑚𝑖𝑛 (𝑥𝑖𝑘, 𝑥𝑗𝑘)

𝑛

𝑘=1

 
(18) 

𝜔𝑗𝜅 = 𝑈(0,1), 𝜅 ∈ [1, 𝑛𝑢] (19) 

𝑑𝜅 = ‖𝑆𝑖 − 𝜔𝜅‖ (20) 

𝑙𝑢 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜅∈[1,𝑛𝑢]

{𝑑
𝜅
} (21) 

 

Filter

input

output

Figure 3. Forward orthogonal search unsupervised 

feature selection method 

Figure 4. Kohonen Self-Organizing Map Neural Network 



 

 Integrating machine learning with QFD for selecting functional requirements in construction automation 

© Dr.Edgar Carino Tamayo, Dr. Yasir Imtiaz Khan, Dr. Mohamed Al-Hussein, Dr. Ahmed Jawad Qureshi  81 

 

DOI http://doi.org/10.29173/ijic235 

 
 

 
 

 

 

 

 

With the use of the above equations, a function for 

updating the weights does the following: (i) calculates 

and orders the Euclidean distance vector, 𝑑 ∈ ℝ𝑛𝑢, 

between neurons and row vector of the similarity matrix 

where the maximum number of neurons, nu, is 3; (ii) 

calculates the index of neuron with minimum distance; 

(iii) updates the weights, 𝜔(𝑡), at a user-configurable 

learning rate α; and (iv) evaluates the indices, ind, of the 

order of 𝑑, and the neighborhood function ℎ in the 

following equations [27].  

              𝑖𝑛𝑑 = 𝑜𝑟𝑑𝑒𝑟(𝑑) (22) 

            ℎ(𝑡) =
1

𝑖𝑛𝑑𝑗
2 (23) 

𝜔𝑗𝜅(𝑡 + 1) = 𝜔
𝑗𝜅

(𝑡) + 𝛼ℎ(𝑡)(𝑠𝑖𝑗 − 𝜔𝑗𝜅(𝑡)) (24) 

Adopting the definitions around the concept of linking 

energy, E, from a study by Faro et al. [29] for evaluating 

whether two classes are similar or not. Linking energy, E, 

is the inverse of the average mean distance of all the 

classes. Aside from E, classification is evaluated by the 

mean distance D between the centroids, CoGs, of two 

classes. Thus, 

𝐸 =
1

𝐿
 

(25) 

     𝜆𝑗 =
1

𝐶
∑ ∑ √𝜔𝑖𝑟

2 + (1 − 𝜔𝑖𝑗)
2

𝑟∈[𝑗,𝐶],𝑗∉𝑟𝑖∈[1,𝑛]

 
(26) 

      𝑙𝑒 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗∈[1,𝐶]

{𝜆
𝑗
} (27) 

𝐿 = ∑ 𝜆𝑗

𝑗∈[1,𝐶]

 
(28) 

𝐶𝑜𝐺𝑗 =
1

𝑛
∑ 𝜔𝑖𝑗

𝑖∈[1,𝑚],𝑗≤𝐶−1

 
(29) 

𝐷 = √ ∑ (𝐶𝑜𝐺𝑗 − 𝐶𝑜𝐺𝑗+1)
2

𝑗∈[1,𝐶−1]

 
(30) 

 

With the above equations, the optimum number of 

classes, C,  is determined [27]. Once C is obtained, SOM 

feature selection can then be evaluated using genetic 

algorithm. This approach requires the function 

somlearn(X,w,C,α) that updates the following: (i) the 

SOM weight matrix, ω, according to Equation (24); (ii) 

the index, lu, of the minimum element in the distance 

vector d, as called for by Equations (20) and (21); (iii) the 

Genetic
Algorithm

input

output

Figure 5. Single layer SOM unsupervised feature 

selection method 
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cardinality of class c, that counts the number of hits of a 

neuron due to the occurrence of lu; (iv) the quantization 

error, 𝑞𝑒𝑝 with 𝑝 ∈ [1, 𝑛] and that 𝑞𝑒1 = 0; (v) rate of 

error reduction ▽ 𝑒𝑝. Thus, the equation can be written 

with 𝜔𝑖𝑗  taken to be the weights of the winner unit as: 

𝑞𝑒𝑝 = ∑ ∑ √(𝑋𝑝𝑖 − 𝜔𝑖𝑗)
2

𝑗∈[1,𝐶]𝑖∈[1,𝑚]

 
(31) 

▽ 𝑒𝑝 =
𝑞𝑒𝑝 − 𝑞𝑒𝑝+1

𝑞𝑒𝑝

 (32) 

Algorithm 3 describes the SOM genetic algorithm 

(SOMGA) feature selection. Genetic algorithm is the 

optimization routine chosen for this approach, which 

provides a framework for expressing binary 

chromosomes to represent the inclusion and non-

inclusion of selected features as 1s and 0s, respectively. 

Table 2 illustrates such representation of each row, 𝑏 ∈
𝑃𝑘 in a population of N chromosomes, 𝑃 ∈ ℝ𝑁×𝑛.  

Table 2. A chromosome of functional requirements, 𝐹𝑅𝑗∈[1,𝑛] 

       FR
j
       

P
k
 1 1 0 1 0 1 0 0 0 0 1 0 1 

 

Randomly initialized chromosomes form the first set of N 

parents in the population. At 𝑡 = 1, the 0s in the 

chromosomes determine which features are excluded to 

form the selected feature matrix, �̂�, for training the SOM 

neural network. As in the previous algorithm, the 

quantization error is evaluated using the functions initw 
and somlearn. In randomly selecting the parents for 

mating, the following fitness function and selection 

probability are used [30]: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑘

𝑘∈[1,𝑁]

=
1

𝑞𝑒𝑘

 (33) 

𝑃𝑘 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘𝑘∈[1,𝑁]
 (34) 

 

All of the unsupervised feature selection algorithms in 

this chapter can then be implemented on any high-level 

programming language, such as Python, R, or MATLAB. 

An application of these algorithms to the customer 

requirement definition phase of the conceptual design of 

a modular automated wood wall-framing machine is 

described in the next section. Graphs describing the 

results of the application have been generated in R 

(RStudio Team 2015). 
 

A summary of the steps required to develop Algorithm 3 

is presented below. This algorithm is a modification of the 

clustering technique by Kuo et al. [30] for SOM feature 

selection using genetic algorithm. 

 
 

Application to modular automated wood 

wall framing machine 
Prototypes of automated steel wall framing and wood 

wall framing machines are under development at the 

University of Alberta. Tamayo et al. have applied QFD in 

the conceptual design of these machines and their 

controllers and control panels [19, 31, 32]. A sketch of a 

completely designed and operational prototype of a fixed 

automated wood wall framing machine is depicted in 

Figure 6. This machine consists of nailing, drilling, and 

sawing stations, dragging mechanisms and a table that has 

a non-stationary side to accommodate different widths of 

wood wall panels. Aside from handling different widths, 

this machine will be capable of making 4×4 and 4×6 

wood panels with studs only, with studs and window, and 

with studs and door at the construction site. Thus, it is 

important that this machine be modular. 

 

 
 

An improvement has been considered for the upcoming 

version of a fully modular wood wall framing machine, 

which can be transported to the construction site to 

minimize production cost. A transportable machine has 

fewer parts, high level of automation, and easier to 

assemble than its stationary counterpart. 

 

Figure 6. Automated wood wall framing machine 
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Table 1. Quality Function Deployment of the modular automated wall framing machine 
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 9  1  9 3        
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2
  3            
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3
 1  9 3 3 3   1 9    
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4
   3 3 1    3 9    
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5
 9  1  9 9 9 3 3  1   
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6
     9 3  9 3   3  

CR
7
 3    9 1 3  1  9   

CR
8
  1   3 3 1  3 9    

CR
9
   1  3     3   9 

CR
10

   1 9 3    3     

 

The QFD developed by the product design team at the 

customer requirement definition phase for the conceptual 

design of a transportable machine is shown in Table 3. 

This QFD matrix defines the input dataset, 𝑋 ∈ ℝ10×13, 

for all of the feature selection methods previously 

discussed. It should be noted that the CRs are the 𝑚 

observations of X, where 𝑚 = 10. The list of customer 

requirements associated with this QFD includes: (𝐶𝑅1) 

quality, (𝐶𝑅2) small, (𝐶𝑅3) fast, (𝐶𝑅4) cheap to operate, 

(𝐶𝑅5) cheap to purchase, (𝐶𝑅6) less maintenance, (𝐶𝑅7) 

adaptability, (𝐶𝑅8) safe, (𝐶𝑅9) user friendly, and (𝐶𝑅10) 

energy efficient. 

 

PCA and Forward Orthogonal Search 

Applying the PCA and FOS techniques to the QFD data 

ranking of the importance of the features is shown in 

Figure 7. It is apparent from the figure that the ranking of 

feature importance differs for PCA and FOS feature 

selection techniques. This contrast of ranking features is 

due to the difference in the selection criteria of these two 

linear methods [34]. PCA is a dimension reduction 

technique that has been modified by Equation (12) to be 

adopted for feature selection. Whereas FOS feature 

selection directly classifies the features according to 

Equation (17). These two linear feature selection 

techniques are considered filter methods and thus are 

simple, easy to understand, and not subject to overfitting 

[35]. Since the loadings corresponding to the last few 

features obtained through PCA are small, 𝐹𝑅13, 𝐹𝑅9, and 

𝐹𝑅12 can be ignored. Likewise, the insignificant features 

𝐹𝑅5, 𝐹𝑅9, 𝐹𝑅1, and 𝐹𝑅3 can be ignored from the set of 

features selected using FOS.  

 

 
 

Which method is preferred cannot be determined at this 

point since the comparison has to be evaluated by the 

fitness criterion, which is invoked by the application of 

the SOM genetic algorithm. However, it is clear that PCA 

is not an appropriate feature selection technique to apply 

for the QFD data of Table 3 because the maximum 

eigenvalue is not significantly larger than the rest of the 

eigenvalues as the scree plot of Figure 8 indicates. 

 

Figure 7. PCA and FOS feature importance 
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SOMGA feature selection 

SOMGA uses a nonlinear model and a probabilistic 

optimization technique that is applied for selecting the 

significant features of the modular automated wall 

framing machine QFD. Known as a wrapper approach, 

SOMGA is susceptible to data overfitting [35]. SOMGA, 

however, as an unsupervised feature selection method is 

less prone to overfitting than a supervised approach [36]. 

Moreover, overfitting is avoided by early stopping once a 

sufficiently complex structure is found [37]. Thus, to 

overcome overfitting the QFD data SOMGA uses single-

layer network and adaptive classification.  

Before applying the SOM model, the optimum number of 

classes, C, must be determined. Figure 9 reveals an 

optimum value of 𝐶 = 2 after the application of 

automatic SOM classification. When SOMGA is applied 

to the QFD data of Table 3, the selected features are 𝐹𝑅4, 

𝐹𝑅5, 𝐹𝑅9, 𝐹𝑅11,  𝐹𝑅12,  and 𝐹𝑅13 after ten iterations or 

25.87 seconds at the crossover and mutation probabilities 

of 0.8 and 0.1 respectively. Due to its sensitivity to initial 

conditions, the genetic algorithm must be applied several 

times to arrive at the fitness value that realizes the desired 

modularity, level of automation, and cost objectives of the 

transportable wood wall framing machine. 
 

Validation of results 

As it is true with the ANN and FL methods used at the 

customer requirement definition stage of conceptual 

design, cross validation does not apply to the 

unsupervised feature selection techniques since the 

observations of the QFD dataset constitute the entire 

population of customer requirements. However, the 

product design team can easily verify the results of any 

feature selection methods used. For the QFD of Table 3, 

the product design team has verified those FRs selected 

by SOMGA to be the most acceptable since they are the 

least number of FRs that truly represent the objectives of 

a transportable automated wood wall framing machine. 
 

A methodology that confirms the decision of the product 

design team has been developed by ranking the 

performance of PCA, FOS and SOMGA methods. This 

step efficiently facilitates the process of employing SOM 

model that provides the selected features in terms of 

chromosomes shown in Table 4. 
 

Figure 10 shows the ranking according to fitness values 

of the selected FRs after applying the somlearn function 

of the SOM genetic algorithm. Ignoring the insignificant 

features selected, as previously noted, the corresponding 

set of features selected for the PCA and FOS methods are 

also represented as chromosomes in the table.  
 

Table 4 presents the set of FRs selected for each of the 

three feature selection methods. Setting up the results in 

terms of chromosomes facilitates the ranking of these 

methods and the evaluation of their performance using the 

functions provided in Algorithm 3. Executing the 

somlearn and fitness functions for each of the 

chromosomes provides the comparison of the three 

techniques in Figure 10. Table 4 replaces the selection, 

crossover and mutation when Algorithm 3 is used as a 

mechanism for the ranking shown in Figure 10. This 

ranking provides a fair comparison of the application of 

the techniques since Table 4 is a mask applied to the same 

dataset, the same SOM network, and the same fitness 

criterion. An interesting observation can be derived from 

this figure. As to be expected, the SOMGA model tends 

to a global optimum due to its use of genetic algorithm, a 

numerical optimization routine. Not only does SOMGA 

provide the least number of FRs, but it is the only method 

that identifies modularity as a FR, which delivers the 

intent of designing an automated wood wall framing 

machine that can be used at the construction site. Non-

exhaustive search algorithms, such as the FOS and 

SOMGA methods, do not guarantee an optimal solution 

[13]. However, a feature selection technique based on 

global search, SOMGA tends towards global optimum 

[38]. Although computationally expensive, wrappers, 

such a SOMGA, usually perform better than filters [38, 

39]. 
 

 

Figure 8. PCA scree plot for the QFD of the modular 

automated wall framing machine 

Figure 9. Optimum number of classes, 𝐶 = 2, 

detected in the 2𝑛𝑑 iteration 
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Table 2. Chromosomes of selected features from the four methods 
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 SOM Genetic Algorithm 
0 0 0 1 1 1 1 0 0 0 1 0 1 
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0 1 0 1 0 1 1 1 0 1 1 1 1 

 PCA 
1 1 1 1 1 1 1 1 0 1 1 0 0 

 

 

 
 

Since the PCA model fails to satisfy the requirement of a 

significantly large eigenvalue as Xu et al. [25] have 

indicated, it has the lowest performance. PCA, however, 

ought to be used as an alternative tool whenever possible 

due to its simplicity and efficiency in handling huge QFD 

matrices. It can also be used for weight initialization to 

speed up SOM learning [41]. 

Among the medium to low performers are the FOS and 

PCA models. These tools can also serve as alternative 

tools for obtaining fast preliminary results in applications 

where the use of SOMGA method can be computationally 

expensive and slow [42].  

An exhaustive search, which maintains the SOM 

architecture, applied to the QFD dataset results in the 

optimum selected features of 𝐹𝑅5 and 𝐹𝑅11as shown in 

Table 5. These features are optimum, with reference to 

maximum fitness value, but are not adequate in fulfilling 

the design objectives of a transportable machine. 

Although suboptimal, the features selected by the 

SOMGA technique, adequately represent the desired 

objectives. Moreover, the six FRs selected through 

SOMGA are a significant reduction from the 13 FRs 

initially obtained at the customer requirement definition 

phase. Thus, on account of Equation (1), the selected FRs 

will result in reducing the design complexity of the 

transportable wood wall framing machine. It is apparent 

from Table 5, that genetic algorithm is the preferred 

feature selection technique since it is significantly faster 

than the exhaustive search approach.  
 

Table 5. Results using genetic algorithm and exhaustive 

search wrapper methods 

Feature 

Selection 

Technique 

Features 

Selected 

Fitness Execution 

time, mins. 

SOM 

Exhaustive 

Search 

FR5, FR11 0.36862807 30.00 

SOM Genetic 

Algorithm 

FR4, FR5, 

FR6, FR7, 

FR11, FR13 

0.11456863 0.43 

Figure 10. Ranking by fitness of the different feature 

selection techniques 



 

 Integrating machine learning with QFD for selecting functional requirements in construction automation 

© Dr.Edgar Carino Tamayo, Dr. Yasir Imtiaz Khan, Dr. Mohamed Al-Hussein, Dr. Ahmed Jawad Qureshi  86 

 

DOI http://doi.org/10.29173/ijic235 

Conclusion 
Feature selection techniques play an important role in 

reducing the design complexity of a product or service by 

reducing the number of FRs at the customer requirement 

definition phase. As expected, the proposed unsupervised 

machine learning feature selection techniques produce 

suboptimal results because they are non-exhaustive. 

When these techniques are applied to the QFD of the 

transportable wood wall framing machine, however, it has 

been observed that these techniques are adequate in 

realizing the design objectives and in reducing the design 

complexity. An optimum number of two FRs have been 

obtained using an exhaustive search algorithm that is 

based on the SOM architecture, but these features do not 

fully capture the design objectives of the transportable 

machine. Thus, in general, the use of exhaustive search is 

not necessary especially in applications that involve huge 

QFD datasets requiring expensive computation.  

A comprehensive set of unsupervised machine learning 

tools has been presented and applied to conceptual design 

of a transportable wood wall framing machine that is 

under development at the University of Alberta. These 

proposed machine learning approaches that are the main 

contribution of this paper address the limitations, 

indicated in the literature, of the existing methods in 

systematically selecting FRs from a QFD matrix [6, 7]. In 

place of these difficulties, however, users of the proposed 

tools have to contend with specifying the learning rate α 

and the thresholds 𝐿𝑡ℎ and 𝐷𝑡ℎ to preclude a priori 

knowledge of the number of classes, thus automating the 

classification process in SOM learning. Quantization 

error is used to measure the fitness in the SOMGA 

algorithm. Other measures such as entropy, Davies-

Bouldin Index, and Gini Index can be explored as to the 

optimal selection of FRs and the automated integrated 

conceptual design package for future research. Another 

consideration for future research should include 

extending the application of the proposed feature 

selection methods to online CR or FR identification, 

design alternatives selection, project management, 

contract management, and marketing. Along with this 

consideration, a software interface should also be 

developed. 
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