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ABSTRACT 
High-rise modular buildings (HMB), based on the advanced approach of modular construction, 

have gained momentum in practice due to their offered benefits in accelerated construction, 

improved quality, reduced health and safety risks, and enhanced productivity. Modular 

construction with standard design of modules and repetitive processes of module installation is in 

favor of the development of construction automation.  

 

As module installation is one of the critical activities in the delivery of HMBs, it is important to 

recognize the module installation process automatically so as to facilitate automation in modular 

construction. However, there is no detailed phase-division of module installation process. Also, 

little research has been carried out on intelligent process recognition for module installation due 

to the limited amount of images of real-life projects. 

 

To fill in the knowledge gaps, this paper aims to build a transfer learning enabled process 

recognition model using convolutional neural network (CNN) for module installation of HMBs. 

The study first divided the module installation process into three stages: hooking, lifting and 

positioning, with a comprehensive literature review. Then the recognition model for module 

installation process was created and trained with the adoption of CNN-based transfer learning, 

and verified with images taken from real-life projects.  

 

The results show that the three stages of module installation process are effectively recognized 

with the proposed model. The transfer learning enabled image recognition model for module 

installation process accelerates automation in the construction of HMBs for enhanced 

productivity and accuracy. 
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INTRODUCTION 
Modular construction (MC) represents the most advanced level of offsite construction with 

reference to Gibb’s categorization of various offsite technologies (Gibb 1999), which is a novel 

approach by using the Design for Manufacture and Assembly (DfMA) theory and advanced 

manufacturing and logistics technologies (Pan & Hon, 2018). The modular units are typically 

fully factory finished and thus advance traditional prefabricated components and two-

dimensional panel systems (Pan 2006). The intrinsic features of MC determine its significant 

advantages over conventional site-built construction methods, with demonstrated benefits in 

accelerated onsite construction, improved health and safety, enhanced productivity and quality, 

and minimized construction waste (Lawson et al. 2014; Pan et al. 2007).  

 

High-rise modular buildings (HMB) refer to high-rise buildings which adopt MC technology. 

Internationally, MC has been adopted in many jurisdictions including UK, US, Australia and 

Singapore, etc. There have also emerged some remarkable projects of HMB, e.g. the 32-storey 

steel framed modular building in the Pacific Park of New York City, US, and the 40-storey 

residential building with concrete modules named Clement Canopy in Singapore.  

 

Yang et al. (2018) pointed out that HMB with standard design of modules and repetitive 

processes of module installation is in favor of the development of construction automation. As 

module installation is one of the critical construction activities in the delivery of HMBs (Lawson 

et al. 2014), it is important to recognize the module installation process automatically so as to 

facilitate automation in the construction of HMB. Machine learning seems to be an efficient 

approach for the automated recognition of module installation via the trained models for image 

recognition. However, there is neither standard database nor enough information of the real-life 

HMB projects towards the module installation process, which severely hinders the model 

training to facilitate automated recognition. 

 

To overcome the problems of lacking enough data for the development of the recognition model, 

transfer learning was first introduced into this study. Transfer learning offers the ability of a 

system to recognize and apply knowledge learned in previous tasks to novel tasks, with the aim 

to extract the knowledge from one or more source tasks and applied the knowledge to a target 

task (Pan et al. 2010). Many studies have been done to address the effectiveness of transfer 

learning enabled image recognition when lacking enough data, such as deep learning based 

transfer learning to recognize emotion on small datasets (Ng et al. 2015), and transfer learning 

assisted prediction of wind speed in a newly-built farm (Hu et al. 2015). 

 

Nevertheless, few studies have been done on the application of transfer learning in the field of 

construction, and little research has been carried out on transfer learning enabled image 

recognition for module installation. This paper aims to build a transfer learning enabled image 

recognition model using convolutional neural network (CNN) for automated recognition of 

module installation process of HMB. To achieve the aim three steps of research were followed: 

1) conduct the analysis of the module installation process; 2) develop the transfer learning 

enabled recognition model; and 3) conduct experiment to train and test the proposed model with 

the collected images. 
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METHODS 
Module installation process analysis 

Compared with the adoption of conventional site-built construction techniques, high-rise 

building with MC is unique in its ability on simultaneous construction and manufacturing as 

most of the onsite works are transformed into the factory while with little works remaining on 

site. Site activities of HMB normally include foundation and lift core construction, module 

installation and connection, and the remaining fit-out works (Lawson et al. 2014). Among the 

site works of HMB, module installation (Figure 1) is one of the most critical activities to ensure 

the successful project delivery (Gibb 1999). Module installation usually occupies heavy-duty 

tower cranes which is in the critical path of the construction programme (Olearczyk et al. 2014), 

and it always concerns much of the construction safety (Fard et al. 2017).  

 

 
Figure 1. Simulation of module installation of HMB 

 

The process of module installation normally consists of hoisting/lifting, positioning (setting in 

place and levelling), connecting and waterproofing (connecting to adjacent modules structurally 

and to make a watertight seal) (Gibb 1999; Staib et al. 2008). In this paper, module installation is 

divided into three stages mainly, including hooking, lifting, and positioning based on the 

literature review and site observation. 

• Hooking: the process of which the module is hooked from the truck or from the storage 

yard by the crane via a lifting frame; 

• Lifting: the process of which the module is elevated or rotated after hooking up before 

reaching the designated position; 

• Positioning: the process of which the orientation of the module is slightly adjusted in 

order to be set in place within the designed tolerance. 

 

To form the database in order to develop the recognition model, images of the module 

installation of HMB were collected via the internet searching on Google Images, site records, 

and video clips from the modular suppliers. Sample of the collected images are shown in Figure 

2, which are categorized with the three installation stages. 

 

 
Figure 2. From left to right: hooking, lifting, and positioning (Courtesy of Teambuild) 
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Model development  

 

Transfer learning 

The framework of transfer learning used in this paper is showed in Figure 3. Let 

 and  denote 

the source and target domain data respectively,  and  denote the data instance of 

the source and the target domain respectively,   and  denote the corresponding 

class label of the source and the target domain respectively. 

 

Though transfer learning has shown its powerful adaptability in many task, it is not easy to apply  

in the context of module installation due to the great difference between the source domain 

dataset  (the ImageNet Dataset) and the target domain dataset  (the dataset of the images of 

module installation), as showed in Figure 3 (Right). To address such challenges, two strategies 

are adopted in this paper (Figure 3. Left). First, the Untrainable Sub-model extracted from 

Inception-v3 (Szegedy et al. 2016), which is trained based on ImageNet Dataset, is used for 

features extraction. This is motivated by the effectiveness of Inception-v3 in transfer learning 

tasks (Mednikov et al. 2018, Mittal et al. 2018). Second, features extracted from the Untrainable 

Sub-model are directly input into top layers of the network architecture to avoid overfitting as 

the target domain  dataset  is small. 

  

     
Figure 3. Left: Model adopted for transfer learning; Right: Data instances of the source ( ) and 

the target ( ) task 

 

Convolutional neural network design 

The Inception-v3 model is used in the Source Task, the structure of which is illustrated by 

Szegedy (2016). The proposed network takes a 256  256-pixel RGB image as the input and 

produces a distribution over the ImageNet object classes, and it consists of 11 mixed 

convolutional layers (Mixed0, Mixed1, …, and Mixed10), followed by top layers as showed in 

Figure 4.   

 

The Untrainable Sub-model in Target Task is extracted from the Inception-v3, specifically from 

its input layer to the mixed9 layer. The reason is that the layer of mixed6 has one of the lowest 
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dimensional outputs as 6  6  2048 features, which can reduce the number of parameters to 

avoid overfitting. The features extracted from the Untrainable Sub-model are flatten into 73728 

 1 dimensions, followed by a 16  1 fully connected layer and ReLU activations. The dropout 

layer with a rate of 0.4 is added to avoid overfitting, and the output layer is 3  1 fully connected 

layer with SoftMaxactivation. The proposed network is showed in Figure 4. 

 

 
Figure 4. The proposed network architecture 

 

Experiment 

 

Dataset 

In line with the procedures of the module installation analyzed in the former section, the images 

of module installation were classified into three categories, which are hooking, lifting, and 

positioning. 249 images of the module installation in total had been collected as the Target Task 

Dataset ( ), which were randomly split into 70% (174 images) training samples and 30% (75 

images) test samples. Image distribution of the three categories is shown in Figure 5. 

 

 
Figure 5. Image distribution  
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Network Training  

All experiments were conducted in the Google cloud platform named Google Collaboratory, 

using Keras library with TensorFlow backend. First, the Inception-v3 model in Keras library 

(Reference) was adopted as the Sourcing Task. Then, for the knowledge transferring part, the 

Sub-model illustrated in Figure 3 (Left), was extracted from the trained Inception-v3 model, and 

its parameters were set to be untrainable when fit into in the proposed recognition model. Finally, 

the category cross-entropy was selected as the loss function for the Target Task, so that the 

objective function  became a convex function to converge (Boer 2005). The objective 

function  is represented as: 

 ,  

where  is the parameter vector,  and  are the predicted label and ground true label in the 

target task respectively, and  is the total number of samples in the target task. 

 

Besides, Stochastic Gradient Descent (SGD) was applied in the training process, as it is one of 

the most effective optimization algorithms in convex optimization (Busto 2015). The SGD was 

set up with a learning rate of 0.01 for the first 32 epochs and 0.001 for the remaining 128 epochs, 

and a batch size of 16. 

 

RESULTS AND DISCUSSION 
It is shown in Figure 6 that both the loss and the accuracy of the training samples get converged 

after around 100 epochs. The overall test accuracy reached a quite high level considering such a 

small dataset, which is up to 0.8533 as is shown in Table 1. Also, the test accuracy is smaller 

than the training accuracy (0.9713), which indicates that the proposed recognition model does 

not over fit the dataset. However, the test accuracies of the hooking and positioning are lower 

than the overall result, with only 0.78 and 0.72 respectively.   

 
Figure 6. Results of the network training – loss and accuracy 

 

Table 1. Results of the network training – training and test accuracies  
Hooking Lifting Positioning Overall 

Train. Acc. 1 1 0.9242 0.9713 

Test Acc. 0.7778 0.9318 0.7273 0.8533 
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Quite a high accuracy (85.33%) is achievable with the proposed recognition model considering 

such a small scale of target domain Dataset, which is mainly due to the reasonable segmentation 

of modular installation and the application of transfer learning in the model training process. The 

three stages of module installation process (hooking, lifting and positioning) well reflect the 

features of on-site activities of HMB, which facilitates to the automated recognition with the 

proposed model. In addition, the adoption of transfer learning offers a chance for features 

extraction and overfitting avoidance with the mature Sub-model, which in turn greatly improves 

the performance of the proposed model. Due to the small scare of the hooking and positioning 

images available, with only 88 for the former and 33 for the latter (Figure 5), it is explainable 

that the test accuracies of these two categories are less than 80%. Since only a small batch of 

images was used in this study, it is believed that the model could be further improved when more 

data are provided. 

 

 

CONCLUSIONS 
This paper has proposed a transfer learning enabled CNN model to recognize the module 

installation process of HMB. First, the process of module installation is divided into three stages: 

hooking, lifting and positioning. Second, the proposed recognition model is developed based on 

transfer learning. Last, the results of the experiment show that the proposed recognition model 

can well recognize the stages of module installation with an accuracy of 85.33%, which could be 

increased with more images available. 

 

The developed model is believed to be helpful for the planning and control of HMB construction. 

Except for the automated recognition of the module installation process, the model can be further 

used to calculate the cycle time of the installation with relevant monitoring devices. In summary, 

the proposed recognition model accelerates automation in the construction of HMBs for 

enhanced productivity and accuracy. 
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