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ABSTRACT 
Modular construction sites are often reported as one of the most hazardous workplaces where the 

complex environments can lead to near misses and life-threatening collisions. To avoid contact 

collisions and provide a safe workplace, forecasting workers' trajectories on dynamic construction 

sites is demanding yet remains challenging. Existing approaches for trajectory prediction are 

mostly limited to only considering the objects moving information. In this paper, an environment-

aware distance worker trajectory prediction model is designed to fully exploit the contextual 

information on construction sites. Incorporating the interactions among workers and distances 

between workers and static elements into the prediction model, the proposed approach offers a 

reliable prediction of worker positions. To further exploit the contextual cues, an environment-

aware direction scheme taking directional information of the static elements into account is put 

forth. Extensive numerical tests on synthetic as well as modular construction datasets showcase the 

improved prediction performance of the proposed approaches in comparison to several state-of-

the-art alternatives. 
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INTRODUCTION 
Building structure components in a factory and transporting them on-site for installation, modular 

constructions provide a promising way to offer faster implementation, safer manufacturing, and 

more transportability compared with traditional construction methods (Bertram et al., 2019; Thai 

et al., 2020). However, its dynamic and information-intensive environment makes ensuring the 

safety of construction workers becoming a very challenging task (Li et al., 2013). Among various 

factors which directly and indirectly contribute to fatalities and injuries in construction workspace, 

contact collisions leading from the proximity of construction resources (i.e., workers, equipment, 

and materials), is one of the most obvious aspects (Teizer et al., 2008). Due to a lack of proper object 

coordination and solid planning, the congested modular construction site poses potential hazardous 

contact collisions and even life-threatening scenarios. For instance, in Fig. 1, the worker in the 

green bounding box is guiding moving a roof in purple bounding box with the direction in purple 

arrow, while the worker in the red bounding box is walking forward with the direction in red arrow. 
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Contact collision may occur when the worker in the red bounding box is focusing on his allocated 

task and fails to recognize the proximity with the moving roof. To mitigate the potential injuries, 

accurate forecasting of construction resources' future positions is critical and can serve as a 

foundation for building the future proactive and informative contact collision prevention systems. 
 

 

Figure 1. Potential hazard on a modular construction site. 
 

To this end, considerable research efforts have been devoted to getting a reliable prediction of 

different subjects for various applications (Altche' et al., 2017; Lasota et al., 2017; Alahi et al., 

2016; Rudenko et al., 2020; Kothari et al., 2021; Yang et al., 2019; Bartoli et al., 2018; Ma et al., 

2018; Cai et al., 2020). To guarantee safely and efficiently driving on public roads, a long short-

term memory (LSTM) network is introduced for predicting self-driving vehicles trajectories in 

(Altche' et al., 2017). Integrating convolution neural networks and LSTM, a hybrid learning model 

is proposed in (Ding et al., 2018) to detect construction worker unsafe behaviors. In the traffic 

management domain, an LSTM network with a novel pooling layer to capture the interactions 

among different pedestrians is pursued in (Alahi et al., 2016). Nonetheless, these approaches suffer 

limited predictive capability as they do not consider the contextual information of scenes. 
 

To address this limitation, two environment-aware trajectory prediction algorithms for construction 

workers are proposed in this paper. Specifically, explicitly considering workers' movement as 

well as the contextual information, an environment-aware distance (EA-Distance) forecasting 

scheme is first developed. Every worker path is modelled through an LSTM network with a novel 

pooling that captures the interactions among workers and the distance with surrounding static 

objects. Furthermore, leveraging the directional information of the surrounding static objects 

relative to the worker, an environment-aware direction (EA-Direction) model is proposed. 

Different from the previous works (Alahi et al., 2016; Kothari et al., 2021), our proposed 

methods offer a systematic and flexible framework to incorporate more general information into 

the prediction model on construction sites. 

 

METHODS 
When conducting construction activities, workers are capable of navigating their behavior to avoid 

potential collisions by sensing the surrounding contextual information. In this study, taking these 

rich contextual features into account, two environment-aware trajectory prediction models are built 

to forecast future movements of workers in the construction workspace using LSTM techniques. 

 

LSTM network has demonstrated remarkable performance in many sequential problems, such as 

machine language translation, acoustic modelling, and activity recognition (Yu et al., 2019). 

Compared to a vanilla recurrent neural network structure, LSTM network contains learnable 

gating functions, that are, input gate contributing new information to be stored in the memory, 

forget gate deciding the forget degree of the internal state, and output gate computing output 
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from previous states. This gate design allows the LSTM network to manage the internal memory 

state when dealing with long time series (Hochreiter et al, 1997). 

 

Given a construction video sequence with N  workers, the position of worker i N  at time instant 

t  is represented in the form of its spatial coordinates ( , )t t

i ix y . Having the observations at time 

instants 1, , obst T=  , i.e., 
1:

1:{( , )} obst Tt t

i i i Nx y
=

= , the goal of worker trajectory prediction is to forecast each 

worker position at the future time instants 1, ,obs predt T T= +  , that is 
1:

1:{( , )} obs predt T Tt t

i i i Nx y
= +

=
. The 

LSTM cell of worker i is updated as following 

𝒊𝑡 = 𝜎(𝑾𝑖𝑖𝒔𝑖
𝑡 + 𝒃𝑖𝑖 + 𝑾ℎ𝑖𝒉

𝑡−1 + 𝒃ℎ𝑖) 
𝒇𝑡 = 𝜎(𝑾𝑖𝑓𝒔𝑖

𝑡 + 𝒃𝑖𝑓 + 𝑾ℎ𝑓𝒉𝑡−1 + 𝒃ℎ𝑓) 

𝒈𝑡 = 𝑡𝑎𝑛ℎ( 𝑾𝑖𝑔𝒔𝑖
𝑡 + 𝒃𝑖𝑔 + 𝑾ℎ𝑔𝒉𝑡−1 + 𝒃ℎ𝑔) 

𝒐𝑡 = 𝜎(𝑾𝑖𝑜𝒔𝑖
𝑡 + 𝒃𝑖𝑜 + 𝑾ℎ𝑜𝒉𝑡−1 + 𝒃ℎ𝑜) 

𝒄𝑡 = 𝒇𝑡 ⊙ 𝒄𝑡−1 + 𝒊𝑡 ⊙ 𝒈𝑡 
𝒉𝑡 = 𝒐𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝒄𝑡)                                           (1) 

where   represents the sigmoid function; ⊙ is Hadamard product; the input data  t

is  is obtained 

by feeding the position ( , )t t

i ix y  of worker i  at t  into a  ReLU network with a weight matrix xyW , 

i.e., ( , ; )t t t

i i i xyx y=s W ; t
i , t

f , 
tg  and 

t
o  represent input gate, forget gate, cell gate, and output 

gate, respectively; 
t

c  is the cell state; and t
h  is the hidden state at time instant t . Parameters iiW ,  

iib , hiW , hib , ifW , ifb , hfW , hfb ,  igW , igb , hgW , hgb , ioW , iob , hoW , and hob  are learnable 

in each LSTM cell. For simplicity of future illustration, let us concatenate these parameters into a 

vector θ . With various gates, LSTM can transfer relative information down a sequence chain after 

learning what information is relevant to remember and what is irrelevant to forget. 

 

To predict the position of worker i  at next time instant 1t + , i.e., 
1 1( , )t t

i ix y+ +
, a bivariate Gaussian 

distribution 
1 1 1( , , )t t t

i i i  + + +N  is considered, where 
1t

i
+

, 
1t

i
+

, and 
1t

i
+

 is the mean, standard 

deviation, and correlation coefficient, respectively. These Gaussian distribution parameters are 

estimated by applying a linear transformation oW  to the output hidden state 
t

ih , i.e., 
1 1 1[ , , ]t t t t

i i i o i  + + + = W h . Therefore, a meaningful approach to learning the parameters of worker 

i entails minimizing the negative log-Likelihood loss as follows (Alahi et al., 2016) 

( )
1

( , , ) log ( , , , ) .
pred

obs

T

t t t t t

i xy o i i i i i

t T

L x y   
= +

= − W θ W P ∣                                     (2) 

As a powerful tool for modeling time-dependent data, this vanilla LSTM network provides a good 

prediction for worker trajectories. However, the environment of modular construction site is 

always complicated, and multiple aspects can influence the path of workers. The vanilla LSTM 

algorithm fails to capture the rich interactions among workers and their surroundings. To address 

this issue, we propose environment-aware trajectory prediction algorithms to incorporate context 

information in the model. 

 

Worker-to-worker interactions  

As workers keep interacting with each other to collaborate on a certain task, worker-to-worker 
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interactions are important for predicting the worker's path. In reality, each worker of interest has a 

different number of neighbors, handling the variable number of neighbors is a challenge for 

aggregating the interaction information. To this end, a local grid is constructed around the worker 

with each cell of the grid standing for the information of neighbors in this grid. Two main forms of 

the grid information are LSTM with occupancy maps (O-LSTM) where every grid cell denotes the 

position of neighbors, and social LSTM (S-LSTM) where every grid cell indicates the LSTM 

hidden state of the neighbors. 

 

Having all neighbors positions {( , )}
i

t t

j j jx y N
 of worker i , with iN  representing the collection of 

neighbors of worker i , the occupancy map pooling can be mathematically expressed as follows  

( , ) [ , ]
i

t t t t t

i mn j i j i

j

O m n x x y y


= − − 1
N

   (3) 

where [ , ]mn a b1  is an indicator function taking value 1 if ( , )a b  is in the ( , )m n  cell of the gird, and 

0  otherwise. The occupancy map t

iO  is embedded into a vector ( , )t t

oi i eo=e O W , which 

constitutes a new input 
t

is  by concatenating  with the original input vector 
t

s , i.e., [ ]
t t t
i i oi=s s e . 

Consequently, worker i  trajectory can be predicted by O-LSTM model by feeding this new input 
t

is  is into the LSTM model (1). Leveraging position information of neighbors, the O-LSTM model 

can make predictions and avoid immediate collisions. Along this idea, S-LSTM model takes one 

step further to get a smooth prediction by containing the history information of neighbors in the 

pooling layer. Since the hidden states of an LSTM network can capture history time varying 

motion-properties of a worker, the pooling layer takes into account all neighbor hidden states as  

   
1( , ,:) , .

i

t t t t t t

i mn j i j i j

j

H m n x x y y −



 = − −  1 h
N

                         (4) 

Similarly, this social pooling 
t

iH  is fed into a ReLU network to get the embedding vector  

( , )t t

hi i eh=e H W . Substituting 
t

hie  for 
t

oie  in the input vector 
t

is , the predictions of the worker i  

trajectory can be obtained by updating LSTM model using (1). 

 

Environment-to-worker interactions  

Worker behavior is collision avoidance-based, which is not only influenced by the factor of 

interactions with neighbors, but also the static objects located     in the environment in which a worker 

is moving. It is expected that the worker will inherently circumvent these static objects to conduct 

the allocated tasks. Thus, in addition to the worker-to-worker interaction, another common 

interaction in the construction workspace is the environment-to-worker interaction. This paper 

takes the static obstacle as an example of the objects in the environment for easy illustration. 

 

As the obstacle is static and sparse in the environment, the spatial coordinates of these obstacles can 

be obtained as prior information and no further prediction is needed. A straightforward way to take 

obstacles into account in the problem is by extending the grid cell information in (3) or (4). In the 

construction workspace, however, those static objects usually are located sparsely. Modeling 

environment-to-worker interactions of all obstacles can lead to the model learning spurious 

correlations. Thus, we propose to consider only the top closest obstacles relative to the worker of 

interest. Specifically, considering top- K  static obstacles around worker i , and letting ( , )dk dkx y  

denote the position of k  obstacle, k K , the Euclidean distance between worker i  and obstacle 
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k  can be expressed as 

2 2( ) ( ) ( ) .t t t

i i dk i dkd k x x y y= − + −       (5) 

The embedding vector of the distance model t

die  can be obtained by ( , )t t

di i ed=e d W . The proposed 

EA-Distance model entails concatenating worker-to-worker interaction vector t

hie  as well as 

environment-to-worker interactions vector t

die  to constitute a new input 
t

is , that is 

[ ].
t t t t
i i hi di=s s e e                (6) 

This new input 
t

is  is fed into LSTM model (1) to get predictions of worker i . Notice in the back-

propagation, the loss function of worker i  in (2) introduces new parameters ehW  and edW  as 

( )
1

( , , , , ) log ( , , , ) .
pred

obs

T

t t t t t

i xy eh ed o i i i i i

t T

L x y   
= +

= − W W W θ W P ∣    (7) 

 

On the other hand, the directional relationship between obstacles and workers also has different 

influences on worker movement. For instance, the obstacle has much less influence on worker paths 

when workers are deviating it than when workers are approaching it. Therefore, we further propose 

an environment-aware direction model, which entails a directional vector ( )t

i kq  to capture this 

directional information of obstacle k  relative to worker i  as 

( ) , .
t t

t i dk i dk
i t t

i dk i dk

x x y y
k

x x y y

 − −
=  

− − 
q

‖ ‖ ‖ ‖
     (8) 

The direction embedding vector is ( , )t t

qi i eq=e q W . Replacing the distance embedding vector 
t

die  

t

qie  in (6), the proposed EA-Direction model can be achieved by (1). 

 

The proposed environment-aware worker trajectory prediction schemes EA-Distance and EA-

Direction are implemented in two phases, namely offline training as well as online inference 

phases. Specifically, in the training phase, the model is fed with the set of observations 
1:

{ , } obst Tt t =
x y  

of all the workers at time instants 1, , obst T=   and trained to output the forecasting. In the inference 

process, the observations of all workers 
1:

{ , } obst Tt t =
x y   are fed into the trained model, and the near 

future forecasting 
1:

{ , } obs pred
t t t T T= +

x y  can be obtained by considering worker-to-worker interactions 

and environment-to-worker interactions. 

 

RESULTS AND DISCUSSION 
In this section, extensive experiments on both synthetic dataset and real construction site are 

implemented to showcase the effectiveness of our proposed methods. 

 

Implementation details and evaluation metrics 

Consisting of relative work (Kothari et al., 2021), the length of observation is 3.6 seconds, while 

the forecasting length is 4.8 seconds. With frame rate setting as 0.4, we use the past 9 frames to 

predict 12 future frames. Two most widely used metrics of trajectory prediction are entailed for 

evaluation, that are, average displacement error (ADE) as well as final displacement error (FDE) 
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(Pellegrini et al., 2009; Alahi  et al., 2016). ADE is the mean square error overall predicted 

positions of the path and the ground-truth path as follows 

1 1

ˆ ˆ( , ) ( , )

:
( 1)

pred

obs

TN
t t t t

i i i i

i t T

pred obs

x y x y

ADE
N T T

= = +

−

=
 − −

  ‖ ‖

      (9)

where ˆ ˆ( , )t t

i ix y  and ( , )t t

i ix y  are the predicated coordinate and ground-truth coordinate, 

respectively. FDE is the distance between the predicated destination and the ground-truth one as 

1

ˆ ˆ( , ) ( , )

: .

pred pred pred pred

N
T T T T

i i i i

i

x y x y

FDE
N

=

−

=
‖ ‖

              (10)

 

       
 

Figure 2: Two example scenes of synthetic data with different prediction models. 

 

Synthetic data experiments 

The first experiment builds on a synthetic dataset generated from Optimal Reciprocal Collision 

Avoidance (ORCA), which provides sufficient conditions for collision avoidance motion (Van 

et al., 2008). To assess the performance of the proposed methods, we have simulated three 

trajectory prediction policies as baselines, namely vanilla LSTM model, O-LSTM model (Alahi et 

al., 2016), and S-LSTM model (Alahi et al., 2016). Table 1 illustrates experimental results for the 

five different models. Evidently, by incorporating worker-to-worker interactions and environment-

to-worker interactions into the prediction model, the proposed EA-Distance and EA-Direction 

schemes can attain smaller errors compared with the alternatives. Fig. 2 depicts the qualitative 

results of the proposed schemes in comparison to alternatives. Curves show the prediction 

trajectories of our proposed schemes are close to the ground-truth. 
 

Table 1. Prediction performance of different models on a synthetic dataset. 
Model name ADE FDE 

LSTM 0.35 0.87 

O-LSTM (Alahi et al., 2016) 0.31 0.74 

S-LSTM (Alahi et al., 2016) 0.27 0.64 

EA-Distance (proposed model) 0.26 0.60 

EA-Direction (proposed model)  0.23 0.51 
 

Construction data experiments 

The second experiment entails real modular construction data from a leading offsite construction 

facility located in Edmonton, Canada. The dataset consists of 7 moving workers as well as 2 static 
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obstacles in a total of 1226 scenes. The surveillance video is obtained by      an oblique view, 

therefore a homography matrix transferring image to real-world coordinates is estimated from 

four manually selected points on the ground with estimated measurements. Upon this homography 

matrix, positions of workers and static obstacles are extracted. ORCA is implemented to generate 

training data with the same static obstacles’ information, while in the testing phase, the construction 

dataset is adopted to evaluate the performance of different models. Table 2 provides the 

performance of the five different prediction methods on the construction dataset, while Fig. 3 

illustrates two example scenes. Result shows the proposed environment-aware based prediction 

models can achieve competitive performance relative to the state-of-art alternatives.  
 

Table 2. Prediction performance of different models on a modular construction dataset. 
Model name ADE FDE 

LSTM 1.68 2.87 

O-LSTM (Alahi et al., 2016) 1.52 2.45 

S-LSTM (Alahi et al., 2016) 1.40 1.92 

EA-Distance (proposed model) 1.43 1.99 

EA-Direction (proposed model)  1.33 1.82 

 

       

Figure 3: Two example scenes of construction data with different prediction models. 

 

CONCLUSION 
This research provides a systematic and flexible framework to incorporate rich contextual 

information into trajectory prediction model to improve the current practice of worker trajectory

forecasting in construction sites. Specifically, considering environment-to-worker interactions by 

investigating collision avoidance of static obstacles, two different environment-aware based 

prediction models, namely EA-Distance and EA-Direction, are devised to predict immediate future 

positions of workers. Notice though the present work focuses on obstacles, the proposed framework 

can account for other types of static objects in the environment as well. Numerical tests showcase 

the competitive performance of our proposed prediction models relative to several existing ones. 

Future directions include investigating the influence moving equipment makes on worker 

trajectories as well as developing hazard detection systems. 
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