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ABSTRACT 
Although much attention has been paid to the safety risk of construction sites and ergonomic risk 

assessment of workers, the automation of ergonomic risk assessment has not been significantly 

developed. This article presents a non-intrusive, automated ergonomic risk assessment approach 

based on computer vision, machine learning, and Rapid Entire Body Assessment (REBA). The 

method is called Computer-Vison Based Rapid Entire Body Analysis Estimation (CVRE). This 

approach is expected to realize automated monitoring and early-stage warning of ergonomic risks 

by automating the procedure of calculating REBA scores for construction site workers. This 

method consists of machine learning-based key joints and joint angles estimation of human bodies 

and computer-vision-based automated risk estimation. With the extensive development of machine 

learning and computer vision, researchers have been paying attention to assessing ergonomic risks 

with machine learning techniques. The proposed method has been further validated using the 

experimental data obtained by a motion capture system. 
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INTRODUCTION 
Ergonomic risk assessment aims to identify potential ergonomic risks when workers carry out 

functional or physical tasks and then mitigate the risk accordingly. REBA is a widely used and 

effective ergonomic risk rapid detection method (Li et al., 2017, 2019). REBA relies on 

information about the body's key joints and the angles of the multiple bones. Therefore, after the 

traditional REBA has been widely used in the past few years, many equipment-based methods of 

human joint localization and bone angle measurement have been used to assess ergonomic risks 

(Antwi-Afari et al., 2020; de Freitas et al., 2019; Muñoz et al., 2020; Nath et al., 2018). Wearable 

sensors and motion capture systems are the most widely used devices for acquiring human 

movement data, including bone-joint angles. These high-precision sensors are typically composed 

of an accelerometer, a gyroscope, and a magnetometer (Poitras et al., 2019). Body motion data can 

be obtained by fusing the data collected by these sensors. Although wearable sensors are portable, 

they are still intrusive. Having wearable sensors on workers' bodies can hamper their ability to 

perform physical or functional tasks. Working with sensors on their bodies for an extended period 
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can make them feel more fatigued. Until wearable sensor technology has been developed to the 

level that the intrusion becomes minimal or negligible, workers on construction sites won't be able 

to use them daily (Ceseracciu et al., 2014). 

On the other hand, motion capture systems can avoid intrusion and interference to workers when 

collecting motion data. In terms of accuracy, motion capture systems are regarded as the best body-

motion-data acquisition method (Ceseracciu et al., 2014). However, motion capture systems have 

a lot more strict requirements on the data acquisition environment, and most of these systems are 

set up in controlled environments such as laboratories (Poitras et al., 2019).  

Computer vision is a sub-area of artificial intelligence that enables computers to extract meaningful 

information from digital videos and images. This study proposes an automated ergonomic risk 

assessment framework based on REBA and computer vision. If the framework can achieve the 

desired results in a single-person image or video application scenario, it will achieve the same 

results in a multi-person application scenario. The system applies 3D joint estimation and 

ergonomic risk assessment to every worker in the same image separately. In other words, CVRE 

treats detected people as people in different photos. Hence, validation for single-person scenarios 

is sufficient to prove if the approach will work for multi-worker scenarios or not. The proposed 

framework consists of three modules. The first module is an image or video-based human body 

key joints estimation module, and it is capable of estimating the 3D poses of Multiple people in 

the same image. The second module is a data processing module based on the joint angle 

requirement of REBA score calculations. The third module is the ergonomic risk assessment 

module utilizing REBA. 

 

METHODS 
The CVRE is designed to automate the ergonomic risk assessment of workers in video frames 

obtained from monocular cameras deployed on construction sites. The system is designed in a 

modular fashion based on the functionalities needed. The human body key joints estimation 

module detects every human's presence in a video frame with YOLOv5. It provides bounding 

boxes of those detected humans, then the output of YOLOv5 is fed into 3D Multi-person Pose 

Estimation (3DMPPE) PoseNet (Moon et al., 2019) for human joints estimation. The estimated 

coordinates of those detected human joints are processed before propagating to the last module 

since the joint coordinates obtained from PoseNet contain irrelevant data for REBA calculations. 

Thus, a data processing module is required. The ergonomic risks assessment module takes the 

processed data and performs joint angle calculations for every worker detected. The results were 

compared to corresponding joint angle data from a motion capture system, specifically a three-

dimensional Vicon motion analysis system. The accuracy of our proposed approach was calculated 

by comparing the estimation of angles between bones to the ground-truth values extracted from 

the Vicon motion analysis system. 

 

Data collection 

Three-dimensional coordinates of key joints were acquired with the Vicon motion capture system. 

Eight Vicon motion capture cameras were installed in a laboratory with approximately 30 cubic 

meters of capture volume, and two video cameras were also connected to the Vicon motion 

analysis system. The motion capture cameras were placed about 2.2 meters above the ground, and 

the motion capture system's reference origin was placed on the ground at the center of the capture 

space. The sampling rate of the Vicon motion capture system was set to 100 Hz, while the video 

camera captured only 50 frames per second at the same time. Synchronous capturing of markers' 
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trajectories and pictures of subjects ensures the input consistency for joint angle comparison in the 

later stage. Because motion capture systems are considered the gold standard for motion 

quantification in terms of accuracy, marker trajectory data from eight motion capture cameras were 

used to extract joint angles. The proposed method took the video frames from the video cameras 

connected to the Vicon motion analysis system. It carried out ergonomic risk assessments for the 

subjects, including estimating their joint angles. Thirty-eight retro-reflective markers based on the 

Plugin Gait model are placed on the represented subjects. The motion capture system acquired the 

joint angles by sampling signals reflected from those markers. The markers were twelve 

millimeters in diameter. Because the Plugin Gait model does not directly fit the needs of our 

proposed approach, post-processing is necessary to convert the Plugin Gait data further to be 

compared with the CVRE. 

 

Human body key-joints estimation 

PoseNet of 3D Multi-person Pose Estimation is one of the state-of-the-art human key points 

inference algorithms (Moon et al., 2019). Workers' key joints were estimated using PoseNet. 

Mainly, PoseNet uses the output from human detection algorithms as its input. We chose YOLOv5, 

one of the state-of-the-art algorithms of its kind, as the human detection algorithm and fed the 

output data to the PoseNet module. The PoseNet is based on its joint estimation neural network, 

and it is suitable for a variety of publicly available annotated human joint data sets. The human 

body key joints estimation module has also been tested on various images of workers on 

construction sites. The results were not ideal because the photos were from cameras too far from 

the workers for the human detection model to work (Fang, Ding, et al., 2020; Fang, Love, et al., 

2020; Kim et al., 2021). Hence, improvement needs to be made. Before application to construction 

sites, neural network models for YOLOv5 and PoseNet need to be trained with construction site 

datasets or simulated datasets. Figure 1 shows some graphical output of this module (Vicon, 2022). 

 

 
Figure 1. a subject with 38 retro-reflective markers was detected by YOLOv5 and then 

processed by PoseNet 
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Data Processing 

The PoseNet estimation of the human joints from video frames contained some superfluous data 

to our system. The processed data is the minimum needed for angle calculation in the ergonomic 

risk assessment module. 

 

Ergonomic risk assessment 

The ergonomic risk assessment module estimates ergonomic risk levels for every worker detected 

in video frames. Ergonomic risk levels are obtained from this module by first calculating the 

skeletal angles based on the processed data from the data processing module and then by using 

these angles to estimate the REBA score (Chu et al., 2020). Thus, real-time ergonomic risk 

assessment is realized for each detected worker. The CVRE requires sixteen 3D joint coordinates, 

and they are head, nose, left shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, 

right wrist, right hand, left hip, left knee, left ankle, right hip, right knee, and right ankle.  

 

Validation 

According to the information available, there is some research related to automatic single-person 

REBA estimations (Chu et al., 2020; Martinez et al., 2017; MassirisFernández et al., 2020; 

Pavlakos et al., 2017; Seo et al., 2016). Thus, we fill the gap by proposing a multi-human 

ergonomics risk assessment system that quantifies movement in monocular camera frames and 

utilizes computer vision and REBA. Vicon system data was obtained to compare the highly 

accurate motion capture system data to the data obtained with our system. For the Vicon motion 

capture system to have the same data samples corresponding to the video camera frames, joint data 

captured by the Vicon system was used every two samples. The video cameras capture 50 frames 

per second, while the Vicon motion capture cameras have a 100 Hz sampling rate. The Vicon 

system tracked the thirty-eight retro-reflective markers attached to the subjects. Because the 

markers can only be attached to the body surface of the subjects, the trajectories of the markers 

captured by Vicon do not coincide with the trajectories of the subjects' joints. Thus, the CVRE 

included an algorithm to estimate subjects' 3D joint coordinates required by REBA using the 

marker coordinates obtained from the Vicon Plugin gait model. The algorithm takes the Vicon 

joint coordinates to calculate their joint coordinates in the CVRE configuration. For example, 

Vicon head coordinates in CVRE configuration could be obtained using coordinates of the right 

forehead and left-back head markers in Vicon. The 3D joint coordinates calculated by this 

algorithm and the 3D joint coordinates estimated by our approach were fed to the same skeletal 

angle calculation algorithms in CVRE. The CVRE was validated by comparing its skeletal angles 

with the same angles obtained from the Vicon motion capture system. Difference and standard 

deviation (SD) of corresponding skeletal angles were obtained. Since REBA scores are calculated 

based on ranges of skeletal angles, they don't represent the accuracy of the skeletal angle 

estimations. Therefore, the skeletal angles were compared instead of REBA scores in the validation 

process. Figures 2, 3, and 4 are reconstructed 3D skeletons from the Vicon motion capture system 

and CVRE data using the ergonomic risk assessment module. 
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Figure 2. top view of reconstructed skeleton for a simulated construction task 

 
Figure 3. front view of reconstructed 

skeleton for a simulated construction task 

 
Figure 4. side view of reconstructed 

skeleton for a simulated construction task

 

RESULTS AND DISCUSSION 
A total of 8 experiment trials involving 500 frames were extracted from the video clips recording 

simulated tasks, and the tasks were actual construction tasks observed in construction site videos. 

The experiments were two trials of every task, including walking, dragging, bending, and 

hammering. The skeletal angles of the subjects in these 500 frames were all estimated by CVRE. 

The actual skeleton angles of the experiment subjects were obtained using the same algorithm 

applied to the marker trajectories. The result of the neck, trunk, upper arm, lower arm, leg, and 

wrist angles between bones from both CVRE and Vicon motion analysis systems were compared. 

Figure 5 shows the neck and trunk angles from CVRE and Vicon motion analysis systems. As it 

shows in the figure, the skeletal neck angle and trunk angle from Vicon in 85 consecutive frames 

follow some periodic patterns. However, some frames have skeletal angles not following the 

pattern. Those random angles are caused by gap-filling in the Vicon motion analysis system or 

marker slipping due to subjects' movement. There is hardly perfect gap-filling because filled gaps 

between adjacent frames are predictions, not actual values. Although the angle values obtained by 

CVRE are different from those of the Vicon motion analysis system, they follow a similar pattern 

as the pattern of angles obtained by Vicon. In addition, the neck and trunk angles of each frame 

obtained by CVRE were only a few degrees higher than those obtained by Vicon. 
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The difference between joint angles obtained by CVRE and Vicon was calculated for all the frames. 

Then, the mean and SD of the differences were calculated for every simulated task. Table 1 shows 

the mean and SD of neck angles, trunk angles, upper arm angles, lower arm angles, leg angles, and 

wrist angles for each simulated task. These results indicate that the differences between the joint 

angles obtained by CVRE and Vicon are less than ten degrees for most skeletal angles. The wrist 

angles are not close to those obtained from the Vicon motion analysis system. They demonstrate 

that skeletal angles of small-size body segments might not be detected at all. The skeletal angles 

of large body segments estimated by our method are close to their actual values. 
 

 
Figure 5. Neck angle and Trunk angle of 85 frames for a large object dragging task 

 

Given by Figure 1 to Figure 4 and Table 1, it is evident that the skeletal angles estimated by our 

approach have differences that need to be reduced. The main reason for these errors is that our 

method relies on artificial neural networks, which require extensive and accurate s network models 

trained with enough and accurately labeled data that will have an extremely low probability of 

fault diagnosis. The proposed approach utilizes a neural network model trained with two publicly 

available human key points detection datasets, Human36M and MPII. Wrist angle is not compared 

due to the limitation of the Human36M dataset; the dataset does not include any key point 

annotation for hands. Hence, future work could focus on producing a comprehensive dataset with 

enough motion quantification information for ergonomic risk assessment. 

Furthermore, our neural network model can be further trained with the dataset needed for REBA 

score estimations. In addition, the accuracy of CVRE could also be further improved by having a 

more accurate Vicon-CVRE coordinates conversion algorithm. A custom Vicon human key joints 

model corresponding to CVRE joints will be developed for future studies. The Vicon motion 

capture system can give more accurate joint coordinates in CVRE configuration by utilizing the 

custom human key joints model. Hence, the differences between CVRE and Vicon motion capture 

system coordinates can be reduced. 

 

Table 1. Mean and standard deviation of differences between CVRE and Vicon angles for four 

simulated construction tasks 

Simulated task Neck angle Trunk angle Leg angle Upper arm angle Lower arm angle 

(degree) Mean SD Mean SD Mean SD Mean SD Mean SD 

dragging 8.38 2.92 3.84 0.99 7.44 7.60 10.22 5.00 4.99 3.44 

walking 6.53 2.26 2.77 0.91 7.21 7.31 8.65 3.23 5.06 3.13 

bending 8.27 2.70 4.76 1.12 8.21 7.44 7.69 3.77 5.21 3.41 

hammering 6.71 3.01 3.55 1.07 7.84 6.81 8.63 4.36 4.77 4.18 
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CONCLUSION 
A computer vision and REBA-based ergonomic risk assessment framework is developed. The 

framework could be used for construction site workers and workers from various industries. We 

demonstrated that the approach has significant accuracy in human key joint coordinates estimation. 

The proposed framework has three advantages over traditional human body movement 

quantification methods. Firstly, it's minimally intrusive to the workers because it neither requires 

workers to wear sensors nor requires special clothing with markers. Secondly, very little equipment 

is needed, and even the less expensive ordinary monocular camera can implement the functions of 

this framework. Finally, different from some existing methods of ergonomic risk assessment based 

on computer vision, it can simultaneously assess the ergonomic risks of multiple people in the 

same image frame. Most importantly, the proposed method can maintain the high accuracy of 

ergonomic risk assessment while possessing these advantages. 

The employment of this system is expected to reduce work-related musculoskeletal disorders and 

other ergonomic risks and provide timely feedback and information on any modifications or other 

immediate actions that may be required. Also, the system will improve workers' productivity by 

giving them feedbacks to reduce fatigue (Konstantinidis et al., 2021). For example, a worker could 

be notified when carrying out a task with a high REBA score for 3 minutes.  

However, this research still has limitations. Since the Human36M does not include annotations for 

hands, the neural network model cannot estimate wrist angles. Thus, the wrist angle reconstructed 

from CVRE's results in Figure 1 is almost zero, while the Vicon motion capture system shows the 

wrist angle is more than 40 degrees. Other limitations include limited trial subjects, a limited 

number of experimental trials, and the experiment was not on a real construction site with a 

corresponding camera setup. In addition, the accuracy of CVRE could be improved by building a 

custom Vicon motion capture model for CVRE joints configuration and then comparing the 

coordinates with the coordinates obtained with CVRE. 
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