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ABSTRACT 
Worksite communication is a key to boosting teamwork and improving worker performance on 

the construction worksite. Communication among workers on the construction site mostly consists 

of speech communication. However, construction sites are typically noisy due to construction tasks 

like drilling and operation of heavy equipment. Meanwhile, workers on construction sites typically 

represent a range of different ethnic and linguistic backgrounds and have different speaking 

accents. This can make it difficult for the listener to understand the speaker clearly, leading to 

miscommunication and errors in decision making on the construction site. Technological 

advancements in recent years can be leveraged to mitigate this problem. In this paper, a keyword 

identification framework is developed for speech communication on the construction site. For this 

framework, 12 hours of raw audio data containing 18 crane signalman speech commands (referred 

to as “keywords”) are collected. The crane signalman uses specific keywords to communicate with 

the crane operator and guide the crane operator in the crane operations. The 2-second audio clips 

(this being the approximate duration of each keyword) are extracted from the raw audio dataset, 

and construction site noise is added. Moreover, mel-frequency cepstral coefficients are extracted 

from the waveform audio dataset. The extracted mel-frequency cepstral coefficients, in turn, are 

used to train the 1-dimensional convolutional neural network. After training, the model is found 

to achieve a training accuracy of 97.3%, a validation accuracy of 96.1%, and a testing accuracy of 

93.8%. The model is further deployed for real-time identification of keywords in speech, with the 

model achieving an accuracy of 95.3%. In light of these findings it can be concluded that the 

developed framework is suitable for real-time application in noisy construction sites for identifying 

specific keywords in speech. 
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INTRODUCTION 
Communication plays a significant role in establishing and maintaining effective working 

relationships in any industry. In current practice, workers on construction sites typically rely on 

face-to-face verbal, hand signalling, and two-way radio communication systems (Mansoor et al., 
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2020). However, when there is an obstacle or significant distance between workers, face-to-face 

verbal or hand signalling communication may not be reliable or even feasible. In such cases, two-

way radio communication is the best way to convey the message. In two-way radio 

communication, radio units are used to send and receive audio data (Carbonell et al., 2020). On 

the construction site, this approach is primarily used for communication between workers on the 

ground and heavy construction machinery operators, such as in crane operations, where a two-way 

radio communication system is typically used when it is difficult for the operator to see the 

signalman due to an obstacle in their line of sight (Stevenson, 2019). This communication 

approach requires a dedicated channel for the communication between operator and signalman that 

must be maintained at all times. 

 

However, construction sites can be noisy due to construction activities such as drilling and 

operation of heavy equipment (Kwon et al., 2016), making it difficult for the listener to hear speech 

commands. Furthermore, construction workers typically represent a diverse range of different 

ethnic and linguistic backgrounds and have different accents, meaning that it may be difficult for 

the listener to understand the speaker in some cases, leading to misjudgments in decision-making, 

as well as safety and productivity issues (Bust et al., 2008). 

 

There in an opportunity in the regard for the construction industry to benefit from recent 

developments in information technology. In particular, intelligent and automated systems of 

communication can be introduced to improve communication between heavy construction 

machinery operators and workers on the ground and thereby improve the safety and productivity 

of site operations. In this context, the present study aims to develop a framework for keyword 

identification in speech on construction sites. The developed framework can provide an intelligent, 

advanced, and more reliable communication system that can reduce the risk of miscommunication 

on construction sites. 

 

RELATED STUDIES 
Speech is the primary means of communication among human beings; as such, speech recognition 

systems have received considerable interest among researchers in recent decades. However, due 

to reliability issues, the systems developed have not been widely implemented (Latif et al., 2021; 

Otter et al., 2020; Strehl et al., 2006). Nevertheless, the major advancements in machine learning 

and deep learning in recent years have led to accurate speech recognition with high reliability that 

has increased the practicability of speech recognition systems (Hinton et al., 2012; Meftah et al., 

2018). Speech recognition systems are now being used for various applications, including (1) 

keyword identification/spotting (Lopez-Espejo et al., 2021; Michaely et al., 2017; Werchniak et 

al., 2021; Momeni et al., 2020); (2) automatic recognition of the content of words and phrases in 

order to direct computer tasks as an alternative to typing, facilitating human–machine interaction 

as a support for the disabled, supporting smart home functions, etc.; (3) emotion recognition, i.e., 

for recognizing the emotion of the speaker based on speech signals (Fragopanagos & Taylor, 2005; 

Petrushin, 2000); (4) in intelligent health care systems to provide information on patient health 

status (Zhou et al., 2001); (5) to assist in deciphering the speech of people with various accents 

(Biadsy, 2011); (6) in estimating a speaker's age (Bocklet et al., 2008) and gender (Vogt & André, 

2006); and (7) for spoken language translation (Schultz & Waibel, 2001), spoken document 

retrieval (Chelba et al., 2008), and multilingual speech recognition (Kannan et al., 2019). 
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In the area of construction, Zhang et al. (2018a) used a speech recognition framework to analyze 

onsite conversations. Their framework used a naïve Bayes classifier to translate speech captured 

on site into text scripts, and to further classify the text scripts into construction activities and 

operations. The framework achieved an overall accuracy of 90.9%. In another study, Zhang et al., 

2018b) developed a supervised machine learning-based sound identification framework, using it 

to identify six different sounds common to construction sites (concrete-grinding, hammering, 

concrete-pouring, drilling, excavator operation, and dozer operation). The framework achieved a 

maximum accuracy of 94.3%. Speech recognition has also been used to retrieve BIM data from 

BIM software (Shin & Issa, 2021) and to identify heavy construction equipment operating at a 

construction site (Cheng et al., 2017). To the authors' knowledge, though, the use of speech 

recognition systems to identify keywords in speech communication on construction sites has yet 

to be explored. The present study thus develops a keyword identification framework to facilitate 

communication by identifying keywords of interest in a noisy construction site. The framework is 

also capable of identify keywords in speech by workers with different accents. 

 

RESEARCH METHODS 
In this research, a crane signalman speech dataset is collected using a microphone attached to the 

crane signalman’s helmet. The speech dataset is pre-processed by adding representative 

construction noises, and data augmentation is implemented by altering the pitch and adding 

random noise to the speech. This helps to generalize the dataset and reduces the likelihood of 

model overfitting, per Lei et al. (2019). The waveform speech is then converted into mel-frequency 

cepstral coefficients (MFCCs) in order to extract unique features from the speech dataset 

(Mahmood & Utka, 2021). MFCCs, it should be noted, are the most widely used feature extraction 

algorithm in the field of speech recognition. The purpose of using MFCCs is to reduce the 

complexity of the model and achieve higher accuracy (Mahmood & Utka, 2021). The extracted 

features obtained using MFCCs are then used to train the one-dimensional convolutional neural 

network (1-D CNN) classifier to identify the keywords in the speech. The 1-D CNN model is 

validated, tested, and deployed for real-time identification of keywords in speech as an output. An 

overview of the keyword identification framework is given in Figure 1. 

 

Figure 1. Overview of keyword identification framework 

108



MOC SUMMIT / JULY 2022 

 

IMPLEMENTATION AND CASE STUDY 
The framework is implemented and tested using the crane signalman speech commands used to 

guide the crane operator in the crane operations on the construction site (see Figure 2). 

 

Figure 2. Crane signalman speech command keywords 
 

Dataset collection and pre-processing 

With no existing dataset for crane signalman speech commands available, the speech command 

data is collected manually at a 16,000 Hz frequency using a microphone attached to the crane 

signalman’s helmet. The dataset collected contains 12 hours of crane signalman speech commands 

made by 45 volunteers (30 male, 15 female) representing 13 different ethno-linguistic backgrounds 

and having different accents. The dataset is resampled into 2-second duration speech files for each 

command, referred to as a “keyword”. Each sample is further normalized to adjust the range of 

speech, equalized to remove bumps from the speech, and compressed to modify the range of 

loudness of the speech. Furthermore, construction site-related noise, collected from the Mixkit 

(2022) and Zapsplat (2022) datasets, is added to the speech. The incorporation of construction site 

noises helps to generalize and reduce the likelihood of model overfitting. Data augmentation is 

then applied to artificially alter the pitch of the speech. 
 

Model development 

The set of 21,600 samples of 2-second audio commands representing a total of 12 hours of data is 

converted from waveform into MFCCs, which are capable of representing the amplitude spectrum 

of the sound wave in a compact vectorial form (De Pinto et al., 2020). In this technique, it should 

be noted, the audio file is divided into frames, usually using a fixed window size, in order to obtain 

statistically stationary waves and, in turn, frames. The frames having been obtained, discrete 

Fourier transform is applied, and only the logarithm of the amplitude spectrum is retained. The 

amplitude spectrum is normalized with a reduction of the mel frequency scale. This operation is 

executed for the purpose of identifying the frequencies (Logan, 2000). The interested reader may 

refer to Davis & Mermelstein (1980) and Huang et al. (2001), in which the MFCC calculations are 

thoroughly explained. To extract features from waveform audio, the main parameters used in 

MFCCs are the number of coefficients (referred to as the static features) that contain the 

information in a given audio frame, the fast Fourier transform length (which represents the number 

of samples in each window), the number of filters (which reflects the number of features extracted 

from the audio file), the frame stride, and the frame length. The values chosen for the developed 

framework are given in Table 1. These values are selected in a trial-and-error based on the 

performance of the model. Figure 3 shows examples of waveform audio and corresponding 

MFCCs. 
 

Table 1. Parameter of MFCCs 

Parameters  

Number of coefficients 40 

Fast Fourier transform length 512 

Number of filters 40 

Frame stride 0.02 

Frame length 0.02 
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Figure 3. Waveform audio sample of keywords and corresponding MFCCs 

 

The features extracted from the MFCCs are then fed into 1-D CNN classifiers, which a classifier 

can operate on vectors of the features for each audio file provided as input. Here, the values 

represent the compact numerical form of the audio frames of 2-second duration. The compact 

numerical form of the audio frame is input to the 1-D CNN, the architecture of which includes four 

convolutional layers that are responsible for extracting and learning features from the input data. 

Each convolutional layer is followed by an activation function to add non-linearity to the output 

neuron. For this work, the rectified linear unit (ReLU) activation function is used in the 

convolutional layers. The ReLU activation function, it should be noted, is an identity line for which 

y = x for all positive lines and y = 0 for all negative values. Each convolutional layer and activation 

function is followed by a pooling or subsampling layer and dropout layer. The pooling layer helps 

the model to focus on the principal characteristics of each portion of speech data, making the potion 

of data them invariant by their position, while the dropout layer activates and deactivates the 

neurons with respect to their weights. (This technique helps to better generalize the predictive 

capabilities of the model.) The output from the dropout layer is then flattened to make it compatible 

with the subsequent layers. Finally, a softmax activation function is applied to one dense layer 

(i.e., fully connected layer) in order to estimate the probability distribution of each of the classes 

properly encoded in the model. 
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RESULTS 
The dataset is randomly split into training, validation, and test sets. The proportion of the training 

set is kept at 80% (17,280 samples) while the validation and test sets are kept at 10% (2,160 

samples) each. The reason for using more samples in the training set is to allow the 1-D CNN 

model to learn more features from the dataset (as this will lead to a more accurate model for 

identifying keywords in the validation and test sets). The 1-D CNN model is trained on 100 epochs 

while keeping the model learning rate to 0.005 and the dropout rate to 0.25. The number of epochs, 

values of learning, and dropout rate are determined experimentally to boost the accuracy of the 

validation and testing. The model is found to achieve average accuracy of 97.3% and 96.1% and 

losses of 0.12 and 0.18 in the training and validation processes, respectively. Moreover, the model 

is found to achieve an accuracy of 93.8% in the test set. The accuracy and loss are measured using 

Equations 1 and 2. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑝𝑒𝑒𝑐ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑝𝑒𝑒𝑐ℎ
 × 100       (1) 

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =
−1

𝑁
 × ∑ ∑ 𝑍𝑥𝑦

𝑀

𝑦=1

𝑁

𝑥=1
 × log (𝑝𝑥𝑦)                      (2) 

 

where N is the number of samples and M is the number of classes; Zxy specifies whether or not 

sample x belongs to class y; and pxy represents the probability of sample x belonging to class y. The 

loss has no upper limit and falls within the range [0,∞], where a value of loss near 0 indicates high 

accuracy. 
 

The model is then deployed for real-time keyword identification from live speech using a 

microphone. Based on 650 iterations, the model is found to achieve an overall accuracy of 95.3% 

in real time. This result demonstrates that the developed model is capable of accurately identifying 

keywords in speech in the context of a construction site environment. As such, the model can be 

considered suitable for use as an additional layer of communication on noisy construction site. 

 

CONCLUSION 

In this study, a keyword identification framework is developed that is capable of identifying, in 

real time, 18 different crane signalman speech commands (i.e., “keywords”). To begin with, a 

dataset of 12 hours of crane signalman speech commands is collected manually using a 

microphone attached to the signalman’s helmet. Construction site noise is then added to generalize 

the dataset. Short audio clips of 2-second duration (i.e., the approximate duration of a 

keyword/command) are then separated from the dataset, and features are extracted from the audio 

dataset using MFCCs. The extracted features are used as an input to train the 1-D CNN model, 

which is found to achieve training, validation, and testing accuracies of 97.3%, 96.1%, and 93.8%, 

respectively. The model is further validated in the real-time identification of keywords in live 

speech, achieving an accuracy of 95.3%. In future work, more data will be added, and the model 

will be further optimized to improve its accuracy in performing real-time keyword identification. 
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