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ABSTRACT 
The construction industry's lack of materials, resources, and financial assets streamlined a shift 

toward using digital lean principles to obtain precise management over the limited resources. Steel 

fabrication companies rely heavily upon the enormous equipment to get promising 

results.  However, implementing lean principles in the fabrication process is not straightforward 

due to the non-repetitive nature of steel construction products. Hence, the time-based modeling for 

such a process lacks accuracy and reliability, especially for manual steel fabrication 

processes.  Accordingly, the current study aims to achieve a practical and accurate estimation of 

fabrication time aspects.  This study targets modeling manual steel fabrication processes (fitting 

and welding workstations) in terms of processing times (cycle time and value-added time). The 

proposed approach builds a machine learning (ML) model to estimate the identified processing 

time aspects. For performance assessment, the typical correlation analysis and linear regression 

(LR) approach was used as a benchmark to quantify the ML model's pros and cons in terms of 

practicality and accuracy. The required data source for this study is a steel fabrication industry 

partner. The results of this study show ML superiority in accuracy over LR processing time 

predictive models, particularly when predictive parameters increase ML presents 13.2 % 

improvement in mean squared error compared to LR predictive model. LR models need fewer data 

and are not computationally expensive like ML models, making them more practical. Additionally, 

the study introduces a precise and practical time estimation approach. Such an approach provides 

precious input for simulation models which support evidence-based decisions and benefits 

quantification of plans. 
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INTRODUCTION 
Steel Fabrication Shops are offsite construction factories that assist the construction industry 

during the construction phase by supplying steel assemblies (beam, columns, etc.) (Alvanchi et al., 

2012). Offsite plants in steel construction projects aim to improve the project's deliverable by using 

specialized equipment to produce steel products in a controlled environment (Eastman & Sacks, 

2008). The massive investment for offsite steel fabrication plants requires them to work in multiple 

shifts and keep the steel-based construction industry effective. A wide range of equipment serves 

different fabrication tasks, and several tools with various capacities exist in these plants. The 

customized nature of offsite steel fabrication plants requires a prudent plan for product flow in 

steel fabrication. Predicting the cycle time of workstations is of great importance through 

122



MOC SUMMIT / JULY 2022 

 

scheduling within offsite construction. The scope of this study is limited to improving the 

predictability in fitting and welding manual station. Unlike automated stations within the steel 

fabrication that perform a repetitive course of actions to process a product using a machine, manual 

stations (like fitting and welding) follow the distinctive design of each product to prepare it by 

human labor.  

The fitting station starts when Computerized Numerical Control (CNC) coping machines provide 

the input product. A description of scheduled tasks in the fitting station is: (1) Locating the product 

on a fitting bench based on its complexity, (2) Reviewing the product design and gathering the 

needed pieces (stiffeners, end plates), and (3) Product preparation and then bolting, coping, and 

tack welding (tacking) of pieces onto the product, and inspection. 

The next station for processed products in the fitting station is the welding station, but project 

requirements may skip some products from the welding process, and these products go to the next 

station (painting). In the welding station, the fitted assembly follows the following steps: (1) 

Locating the product on the welding bench, (2) Marking the product based on product design, (3) 

Welding preparation and welding the pieces to the product, and (4) Welding inspection. 

Due to the high exposure of human resources, the stations that involve a manual process instead 

of a machine process are areas where scheduling and predictability are highly subjective. These 

manual stations experience bottlenecks because they cannot keep up with production coming from 

upstream automated stations. Considering the manual stations ' challenges, the low repetitive and 

diverse range of products in the steel fabrication makes the project's planning and predictability 

difficult (Hofacker & Gandhi, 2009).  

The question to be addressed in this study is which of the Machine Learning (ML) and Linear 

Regression (LR) predictive models perform better in terms of accuracy and practicality. The 

significance of this study is improving predictability in the critical stations of steel fabrication. The 

predictive models presented in this study eliminate the subjectivity in time estimations by using 

data as a core steppingstone. The authors collected these data directly from industrial partners' 

steel fabrication plants. Promising results of data science have been drawing a substantial amount 

of attention in academics and media recently. Applying intelligent and computer-based tools and 

techniques to achieve meaningful information from data to help humans is pivotal in this era. This 

line of application of data is the content of the new field of knowledge discovery in databases 

(KDD). KDD maps a large number of preliminary data into understandable data. First, initial data 

excessively voluminous for a human to digest turns into concise and helpful information in this 

process. A practical example for this information could be a predictive model for estimating the 

value of future cases. The application of data-driven techniques for pattern discovery is the core 

of KDD (Fayyad et al., 1996).  

KDD and data mining (DM) assist construction managers in planning projects by identifying 

functional and previously unknown patterns. In a given construction project, a project manager's 

responsibilities involve three primary efforts: (1) planning: Listing the project's activities, 

determining required resources, and estimating the time and cost for each activity,(2) scheduling: 

determining the sequence of listed activities and the required resource during the project stages, 

the planned date for each activity is the output of this effort, (3) controlling: monitoring the project 

progress during the construction phase and analyzing as-built projects with as-planned 

(Demeulemeester & Herroelen, 2002). 

The focus of this study is predicting activities duration. This effort helps project managers in 

scheduling means "the determination of the timing and sequence of operations in the project and 

their assembly give the overall completion time" (Mubarak, 2015). Estimating the duration of the 
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task's within a project incorporates expert judgment, analogous estimating, and other techniques 

(Project Management Institute, 2017). The customized nature of industrialized construction creates 

a unique atmosphere for scheduling the processes. Steel fabrication poses distinctive challenges 

because of the varying markets and the highly customizable product assemblies. The nature of 

construction projects carries risk due to the scheduling phase uncertainties. Several lines of 

research focused on production planning and control in the repetitive manufacturing environment. 

Meanwhile, limited investigations focused on improving the predictability of processing time in 

manual operations. 

In the steel fabrication scheduling sector, scholars focused on the heuristic decision support system 

for scheduling steel fabrication projects; these works focused briefly on the total processing time 

of machinery operations and didn't consider manual processes in their study (Karumanasseri & 

AbouRizk, 2002). The processing time of each product is highly correlated with the product's work 

amount. For enlightening the scope of projects involved with non-repetitive operations like steel 

fabrication operations, some lines of research focused directly on quantifying the work amount for 

each product in steel fabrication. They automatically collected and used products category (e.g., a 

beam, truss. etc.) and complexity (e.g., number of fittings) data to quantify the needed effort for 

drafting a steel product. They called this quantity for a product a drawing unit (Song & AbouRizk, 

2005).  

The proposed methodology in this study borrows complexity features of products from this study 

to predict the processing time in both ML and LR models. The drawing unit quantifies the amount 

of work used by scholars to measure the productivity of steel drafting in steel drafting work. They 

implemented a neural network to analyze variation in productivity by using an abstract drawing 

unit measurement system, historical labor hours, and influencing factors of a given project (Song 

et al., 2012). Using historical labor hours for productivity analysis is applicable for completed 

projects and is applicable for future projects; the research in this study provides a data-driven 

approach for predicting activities time for productivity analysis. Multiple factors affect manual 

operations' processing time and vary considerably in industrial fabrication shops. Practitioners 

traditionally used statistical distribution from historical data or expert judgments to determine 

processing time. These methods are highly subjective or do not reflect influencing factors in 

determining processing time. Scholars implemented an artificial neural network (ANN) to predict 

processing time and thoroughly reflect these processing time factors. They integrated the ANN 

model into the simulation of steel fabrication operations (Song & AbouRizk, 2006).Using ANN 

for predicting processing time in other construction sectors shows promising results. Researchers 

integrated ANN and observation data in the earthmoving sector to predict excavation operations 

cycle time (Chao & Skibniewski, 1994; Karshenas & Feng, 1992). Moreover, ANN is used to 

model labor productivity in concrete formwork installation tasks (Portas & AbouRizk, 1997). 

Although many scholars have scrutinized production planning and control in industrialized 

construction, advanced data analytics is necessary to improve project planning and predictability 

in different customized industrial construction sectors. This study aims to enhance the 

predictability of two manual fitting and welding stations in steel fabrication. The proposed 

methodology evaluates the ML and LR predictive models' performance in terms of accuracy and 

practicality in manual stations.  

The outline of this paper is as follows: (1) a description of the proposed method and its steps, (2) 

the results of the study that shows the improvement gained by using ML-based predictive models 

and a discussion of the results and how we could be able to improve predictive models, and (3) a 
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conclusion that summarises challenges, limitations, and importance of this study and presents ideas 

for future studies. 

METHOD 
Predicting assemblies' processing time through steel fabrication stations is essential for planning 

productivity. The proposed methodology herein evaluates the results of ML and LR prediction 

methods for processing time. A time study collects the input data in this study through manual 

tasks in the steel fabrication's fitting and welding stations. Figure 1 presents an outline of the study 

in two data collection and processing sections. The data collection process starts with reviewing 

the welding and fitting historical data and getting information about required tasks at each station. 

Next, the authors meet experts and managers in steel fabrication to discuss the outline of the study, 

and then they develop the required format for data collection (See Table 1.). Finally, the data are 

collected from the industrial partner's fitting and welding station in saint john, New Brunswick, 

Canada. 
 

 
Figure 1. Outline of the proposed methodology 

 

In the data processing section, the data preprocessing task prepares the data for data analysis and 

provides reliable and consistent data for the study. Second, the collected data is split into a train 

set (for creating the predictive) and a test set (for testing the models' performance). ML steps first 

augment the data for the predictive model, then implement the model based on the augmented train 

set, and finally report the model performance based on the test set. LR model works without a data 

augmentation process, and when this model is trained based on the train set (or augmented train 

set), the performance of the LR model on the test set is the output. Evaluating the LR model and 

ML model errors based on the same test datasets shows the accuracy of each predictive model. 

The practicality of each model depends on the ease of implementation of each model. 

Table 1. shows the data collection formats for fitting and welding. The fitting station has six related 

features: (1) Fitter rating, which represents fitter's skill. (2) Parts tacked are the number of parts 

added to the assembly by welding. (3) Parts bolted are the number of parts that add to the assembly 

by bolting. (4) Bolts are the number of bolts at each assembly. (5) Copes represent the number of 

cutting that each assembly needs. (6) Drills are the number of holes for each assembly. The welding 

station has only one related feature, the weld length. Table 1. presents the required task at fitting 

and welding stations, and the authors collected these tasks' processing time by direct observation. 

The size of collected data for fitting and welding stations is 100 assembly. 
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Table 1. Datasheet's outline for time study. 
 Headings  

The Fitting Station The Welding Station 

Assembly's Features Assembly's Required tasks Assembly's Feature Assembly's required tasks 
Fitter rating #Of Copes Crane use Sweeping Bolting Weld length  Crane use Grinding 

 

Move to 

next station 

#Of parts 
tacked 

#Of Drills Reviewing 
drawings 

Grinding Drilling    Reviewing 
drawings 

Gouging  

#Of Parts 

Bolted 

 Gathering 

pieces 

Coping Inspection    Marking 

spots 

Welding  

#Of Bolts  Marking 

spots 

Tacking Move to 

next station 

   Sweeping inspection  

Notes: * # present: number or quantity of the next term. 
 

First, the authors scrutinized the collected data from stations and removed inconsistent data for 

further analysis for data preprocessing. The inconsistency rate through the dataset was 10 %, and 

finally, we had 90 data points for analysis. We randomly separated these 90 pieces of data into 

training and test sets, and hence we had 63 data points for training and 27 data points for the test 

(Rácz et al., 2021). 

This study utilized sci-kit-learn for implementing LR model in Python because of its strong and 

efficient tools for data analysis. Due to the limited size of the training set in our problem, sci-kit-

learn directly solves the linear regression based on Eq.1. Next, when θ matrix weight is available, 

the cycle time is the product of θ and the test set. 

     𝐼𝑓   𝑋𝑇 . 𝑋 non − invertible:   𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  
                                                                                      𝐸𝑙𝑠𝑒:   𝜃 = (𝑋𝑇𝑋 + 𝑍)−1𝑋𝑇𝑦                      (1)      

In Eq.1, X is the whole training set's matrix, and each row of it presents features of an assembly, 

and y is the training set's cycle time. Z is a non-negative matrix that that its diagonal values are λ 

(except the first row and first column) and other values of this matrix are zeros.  

The same train and test set was used to implement a neural network and evaluate its performance 

with linear regression. The collected data for this study was insufficient for implementing a neural 

network, and hence the data was augmented to improve its performance. The authors used the 

augmented trainset to implement the LR prediction model and ensure that the augmentation 

process doesn't affect the comparison between LR and ML models. Figure 2. illustrates the data 

augmentation process in this study (Hu et al., 2019). The idea for this augmentation process is to 

generate several instances from each data in our train set. Each instance i., from our train set, is a 

parent for M children in our augmented data. Each child j inherits the same features of its parent i. 

The processing time for each child j is based on a normal distribution. The mean of this distribution 

is the average parent's processing time. Its standard deviation is the product of the train set's 

standard deviation, and K (a small, non-negative value that will be trained by architecting the 

neural network). Table 2. presents fitting stations augmentation process. 
 

A neural network model trained in TensorFlow framework and Keras API to efficiently predict 

the cycle time in each fitting and welding station. We used Adam optimizer (Kingma & Ba, 2017) 

in Keras that provides an efficient ground for running gradient descent. These hyperparameters are 

learning_rate, layers and units in each layer, epochs, batch_size, and dropout regularization. 
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Figure 2. Data augmentation for ML model 

Table 2. Fitting station sample collected data and augmentation process 

ID # Parts 

Tacked 

# Parts 

Bolted 

Bolts Copes Drills Cycle 

Time  

1 0 6 8 0 1 23 

2 4 0 0 0 0 45 

3 2 4 4 4 0 30 

4 6 2 4 0 0 28 
 

Augmented Cycle 

Time 

ID = 1 

23.04 

23.1 

23.15 

22.3 

22.5 

22.01 
 

Average Standard Deviation K M 

26 16.78 100 6 
 

RESULT AND DISCUSSION 
The neural network architecture achieved by the experiment for both stations is shown in Table 3. 

The number of layers for both stations is three, and more layers cannot improve the predictability 

of processing time. The fitting station has seven units at each layer compared to three units for the 

welding station. The learning rate for both stations is close to Adam optimizer's default value 

(0.001) and for the fitting and welding station is 0.0007 and 0.0011, respectively. We used the 

dropout regularization method to avoid overfitting in our train set. These values based on an 

experiment (trial and error) for fitting and welding station are 0.0086 and 0.0009, respectively. 

The epochs, number of passes through the whole train set, and the batch size, the size that updates 

the optimization algorithm's parameters at each step are the same for both stations. The M value 

that augments the train set M times for both stations is 100 for each station, and the K value for 

both stations is 0.01 to limit the variance of processing time. 

Table 3. Neural network architecture for fitting and welding stations 

 Fitting Station Welding Station 

Number of layers 3 3 

Units of each layer 7 3 

Learning rate 0.0007 0.0011 

Dropout  0.00086 0.0009 

Epochs 30 30 

Batch size 32 32 

M (augmentation rate) 100 100 

K (Std modifier) 0.01 0.01 

Table 4. presents the mean squared error for welding and fitting stations using LR and ML. ML 

results in both stations have a minor error compared to the LR model. In this study, we used five 

features for predicting the processing time of the fitting and one feature for the welding station. 
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Due to the higher number of input features in the fitting station, the ML model's performance in 

the fitting station is higher than in the welding station. This study shows that ML models improve 

the simple LR model's error by around 13.2 percent when the number of predictors is five. When 

there is only one predictor ML model shows 2.3 % improvement compared to LR. 

Table 4. Mean squared error (MSE) results for ML and LR in fitting and welding stations 

 MSE of LR  MSE of ML  Improvement % 

Fitting Station 68.58 59.56 13.2 

Welding Station 86.84 84.59 2.3 

The lack of reliable and sufficient data makes practitioners reluctant to choose ML methods for 

predictive models. The augmentation process discussed herein eliminates data insufficiency. The 

authors implemented another LR model based on the augmented data, and the results for linear 

regression were the same as LR before augmentation. Hence the better performance of the ML 

model over LR is not concerned with the augmentation process. During the error analysis, the 

authors realized that they should have used two features for parts that needed to be added to each 

assembly. Some parts in steel fabrication processes are liftable by workers, and others need cranes 

to be lifted. Hence, we should have defined two types of parts before data gathering: (1) liftable 

parts and (2) non-liftable parts. 

CONCLUSION 
Predicting the processing time of tasks is of high importance in scheduling construction projects. 

Precise estimation of the project's completion date leads to customer satisfaction and increased 

profit in the construction industry. Due to the many operational and context-level parameters 

relating to the work condition in the construction industry, the process of estimation of work 

duration is highly subjective. This study utilizes data to present ML and LR predictive models and 

eliminate subjectivity in the time estimation of fitting and welding manual stations. ML predictive 

models compared to LR present better results in terms of accuracy in fitting and welding stations 

by around 13.2 % and 2.3 % improvements in predictive model error, respectively. ML model 

superiority in accuracy over LR is more prominent when the number relating parameters to the 

work condition (input features for predicting) is higher. In terms of practicality, LR models are 

better. ML models suffer from a lack of data and are computationally expensive and complicated, 

and these two drawbacks make construction managers reluctant to use these models. This study 

eliminated subjectivity in time estimations within steel fabrication scheduling and enabled 

fabrication shop managers to predict the required time to complete manual fitting and welding 

station tasks and improve project scheduling and delays. The limitations of this study are in the 

size and the collection method of input data. The collection method in this study was based on a 

one-month direct observation and was prone to human error. Future studies can focus on improving 

the data collection method. An automatic data collection framework enhances the reliability and 

size of the data and improve the model's predictability.  
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