

Modular and offsite Construction Summit

July 28-31,2025 Montreal, Canada

Barriers and Potential Solutions to the Adoption of Modular and Offsite Construction: A Review

Ayda AGHLMAND AZARIAN^{1*}, Ahmad BOUFERGUENE², Mohamed AL-HUSSEIN³, SeyedReza RAZAVIALAVI⁴, Jun AHN⁴, Amirhossein MEHDIPOOR⁴, Aryan HOJJATI⁴, Joon Ha HWANG⁴, Dena SHAMSOLLAHI⁵ and Osama MOSELHI⁵

¹ PhD student, Department of Building, Civil and Environmental Engineering, Concordia University

² Campus Saint-Jean, University of Alberta
³ Department of Civil and Environmental Engineering, University of Alberta
⁴ Construction Research Centre, National Research Council Canada
⁵ Department of Building, Civil and Environmental Engineering, Concordia University,
*Corresponding author's email: ayda.aghlmandazarian@mail.concordia.ca

ABSTRACT

Modular and offsite construction (MOC) offer improved efficiency, sustainability, and flexibility in the construction industry compared to traditional methods. However, its widespread adoption remains hindered by various barriers. This paper presents a collaborative study conducted by researchers from Concordia University, the University of Alberta, and the National Research Council Canada (NRC) to identify and address these challenges. A comprehensive review of existing global research was conducted to identify barriers to MOC. These barriers were analyzed and categorized into six key groups: 1) Regulatory, 2) Economic, 3) Technical, 4) Organizational, 5) Workforce, and 6) Environmental. Additionally, recommendations to overcome these barriers are proposed and discussed. The findings from this study will serve as a foundation for a field survey to evaluate the significance of these barriers and assess their real-world impact within the current construction ecosystem. This study contributes to advancing MOC by identifying its barriers and supporting the industry's urgent need to adopt more sustainable and innovative alternatives to traditional construction methods.

KEYWORDS

Offsite construction; Modular construction barriers; Construction industry; Innovation; Review

INTRODUCTION

The construction industry is critical for economic growth but faces inefficiencies such as high costs, extended timelines, and environmental concerns (Razkenari et al., 2020). MOC offers a solution by improving efficiency, optimizing costs, enhancing sustainability, and ensuring quality control (Mao et al., 2016; Hong et al., 2016; Jin et al., 2020). For example, one study in Hong Kong showed that MOC could reduce construction waste by 56% and construction time by 20% (Jaillon & Poon, 2009). Despite these benefits, its adoption remains limited due to regulatory constraints, cost and affordability issues, limited design flexibility, and shortages in skills and experience (Rahman, 2014; Hatata et al., 2022; Sutrisna et al., 2022). This study identifies the key barriers to MOC adoption, categorizes them, and proposes effective solutions. The findings aim to

help overcome these challenges and encourage wider implementation. This paper is organized by a literature review, barriers categorization, solutions, and concluding remarks.

LITERATURE REVIEW

MOC involves relocating construction activities to an offsite environment and using prefabricated modules in the project delivery process, which helps improve project performance in terms of time and process efficiency (Lin et al., 2022; Wuni et al., 2023). However, its adoption is hindered by barriers such as technical complexities, limited industry knowledge, resistance to change, fragmented supply chains, high initial costs, and inadequate regulatory support (Ali et al., 2023). Without a clear understanding of these challenges, efforts to promote MOC adoption may remain ineffective, leading to industry resistance and continued reliance on traditional construction methods.

CATEGORIZATION OF BARRIERS

Regulatory Barriers

Outdated codes and unclear standards hinder MOC adoption, making compliance and quality assurance difficult (O'Connor et al., 2014; Sarbini et al., 2025). In Malaysia, regulations designed for conventional construction fail to accommodate modular systems, posing significant adoption challenges (Sarbini et al., 2025). In Sub-Saharan Africa, the lack of Building Information Modeling (BIM)-specific regulations and national standards for BIM creates challenges in standardization and approvals, making MOC integration more complex (Saliu et al., 2024). Meanwhile, the absence of a dedicated regulatory body leads to voluntary compliance, which, combined with unsound standards and a lack of effective incentives and policies, contributes to delays in project approvals and hinders the wider adoption of (Cheng et al., 2017)

Economic Barriers

MOC faces significant adoption challenges due to high upfront costs, particularly related to initial investment and transportation (Cheng et al., 2017; Patel & RazaviAlavi, 2022). The expense of prefabrication facilities and specialized equipment further limits financial feasibility (Li, 2023). In China, these barriers have slowed adoption compared to developed countries (Zhang et al., 2014). Low market demand in China also contributes to higher deployment costs, discourages developers, and reinforces reliance on conventional methods (Mao et al., 2015). In Perth's 18-storey modular hotel project in Australia, developers manufactured modules overseas to avoid the high cost of local production, underscoring financial constraints that limit broader adoption (Sun et al., 2020). Beyond direct costs, time-related inefficiencies such as delays in design finalization, production, and assembly can offset savings and create hesitancy (Mehdipoor et al., 2023).

Technical Barriers

Among the key technical barriers to MOC adoption are complex system interfacing, and the inability to finalize designs early (Pan et al., 2007). These issues are further compounded by design inflexibility, long lead-in times, and dimensional or geometric inconsistencies often caused by manufacturing flaws, material warping, or transport damage which lead to costly on-site adjustments (Shahtaheri et al., 2017). The process is further complicated by delayed contractor involvement, frequent design changes, and limited use of Design for Manufacture and Assembly (DfMA) principles and design automation, due to the need to regenerate drawings, poor

coordination, and the lack of autonomous design-to-manufacturing systems (Said et al., 2017; Jensen et al., 2012; Sadoughi et al., 2020; Lu, 2017; Sadoughi et al., 2024). In addition, digital tools such as Radio Frequency Identification (RFID) and 3D simulation remain underutilized, often resulting in coordination gaps across project stages (Zhong et al., 2017; Sadiq et al., 2018).

Organizational Barriers

Knowledge shortages, limited manufacturing capacity, and logistical constraints hinder MOC adoption (Li, 2023). Additionally, restricted site access, inadequate storage, and complex module placement disrupt construction processes. These inefficiencies, combined with fragmented supply chains and poor scheduling, drive up costs and cause delays (Choi et al., 2019). Transport challenges such as oversized modules, permit restrictions, and congestion further reduce productivity (Li, 2023; Choi et al., 2019). A shortage of skilled contractors, resistance to innovation, and the absence of certification bodies also poses significant barriers. Moreover, limited supplier access, weak collaboration, and inadequate workforce training exacerbate organizational inefficiencies. Poor coordination, lack of stakeholder involvement, and ineffective leadership further hinder decision-making and project efficiency, underscoring the need for integrated delivery models and improved process management in MOC projects (Wuni & Shen, 2020; Ribeiro et al., 2022; Saad et al., 2023)

Workforce Barriers

The shortage of skilled labor in MOC, particularly in specialized modular trades, and manufacturing, is a major barrier to industry growth and limits production efficiency despite rising demand (Khan et al., 2024; Almughrabi et al., 2021). Most training programs still focus on traditional construction methods, resulting in poor adoption of prefabrication techniques (Chen & Samarasinghe, 2020). Additionally, the transition to offsite methods requires new technical and interpersonal skills that are not yet systematically addressed by education providers (Ginigaddara et al., 2019). Fragmented collaboration among designers, manufacturers, and builders restricts knowledge transfer, while the absence of standardized training and certification systems exacerbates skill gaps and complicates workforce allocation (Assaad et al., 2022). Beyond skill shortages, logistical inefficiencies, supply chain disruptions, and worksite congestion further reduce labor productivity, leading to delays and costly rework (Assaad et al., 2023).

Environmental Barriers

Despite MOC relative advantages in reducing waste and carbon emissions, it still faces environmental challenges (Alhawamdeh & Lee, 2024). High carbon emissions from production of materials like steel or cement is a challenge across the construction industry, including MOC (Karlsson et al., 2020). Additionally, the slow adoption of low-carbon materials and weak regulatory policies further hinder sustainability efforts (Karlsson et al., 2020). While MOC reduces onsite waste, inefficiencies in material cutting and excessive resource consumption generate substantial offsite waste (Thirunavukkarasu et al., 2021). The heavy reliance on cold-formed steel, high transport emissions, and limited use of renewable energy further exacerbate its environmental footprint. Moreover, the absence of deconstruction and recycling strategies prevents MOC from fully supporting a circular economy (Choi et al., 2019).

ADDRESSING KEY BARRIERS TO THE ADOPTION OF MOC

Regulatory Solutions

Razkenari et al. (2020) identified regulatory requirements as the most significant barrier to MOC adoption. China's integration of regulations with technology has accelerated adoption, serving as a global model (Chang et al., 2018). Government support programs and regulator training can further enhance compliance and drive adoption. In the study conducted by Marwan et al. (2022), which was based on cross-country survey data, the authors analyzed questionnaires and offered comparative insights into approaches such as self-certification and third-party certification. According to this study, Sweden relies on self-certification, Switzerland combines it with third-party oversight, and the UK enforces independent certification. China follows self-certification with government backing, while Australia's National Construction Code (NCC) remains voluntary, placing compliance responsibility on manufacturers. These models highlight how self-regulation, third-party oversight, and policy reforms can facilitate MOC adoption.

Economic Solutions

Lowering MOC's high upfront costs requires government funding, tax breaks, and improved expenses, while mass production and uniform regulations further stabilize costs (Chiang et al., 2006). Affordable financing options, including lower interest rates and modular loans, attract investment (Sadoughi et al., 2024). Optimized logistics planning, such as Just-in-Time (JIT) delivery and improved module packaging, enhance efficiency (Sun et al., 2020). Technologies like BIM and automated lifting systems further cut labor and equipment costs, improving modular construction's economic feasibility (Sun et al., 2020). Early collaboration and long-term supplier-builder relationships also enhance design coordination and project success (Ajayi et al., 2016).

Technical Solutions

To address technical challenges in MOC, countries like China, the UK, the US, Australia, and Singapore are adopting DfMA to improve standardization, precision, and automation through government policies and industry collaboration (Widanage & Kim, 2024). DfMA, lean construction, and automated fabrication streamline MOC by reducing waste, enhancing precision, and optimizing assembly (Langston & Zhang, 2021). BIM, Internet of Things (IoT)-enabled tracking, RFID workflows, and cloud-based data sharing improve supply chain coordination and quality control, minimizing errors (Zhong et al., 2017). BIM-based automation tools like MCMPro enhance collaboration, scalability, and cost-effectiveness (Alwisy et al., 2019). Advanced connection methods, such as high-strength bolted mechanical systems for steel modules further reduce onsite labor, cut material waste, and boost assembly efficiency (Zhang et al., 2020).

Organizational Solutions

Overcoming organizational MOC requires a multi-level approach. At the macro level, targeted education can address cultural resistance and promote MOC's benefits in cost, efficiency, and sustainability (Wuni & Shen, 2020). Organizational strategies like Integrated Project Delivery (IPD) encourage early collaboration and shared responsibilities (Hall et al., 2014), while vertical integration aligns manufacturing with supply chain operations for better coordination (Steinhardt & Manley, 2016). Digital tools, particularly when combining BIM with IPD, enhance real-time communication, reduce delays, and improve cost predictability (Li, 2023). At the workforce level, recruiting and upskilling in design, manufacturing, and installation is essential to support the shift between offsite and onsite environments (Almughrabi et al., 2021).

Workforce Development Solutions

Developing a skilled MOC workforce requires education, training, and standardization. Universities and apprenticeship programs should integrate MOC-specific curricula, while certification systems uphold industry standards. BIM-enhanced training improves design coordination and execution (Assaad et al., 2022). Standardized processes like Lean Manufacturing, Standard Operating Procedures (SOPs), and Production Breakdown Structures (PBS) enhance workflow efficiency and reduce waste (Zhang et al., 2020). With labor accounting for nearly half of construction costs, RFID technology optimizes workforce logistics by providing real-time data on worker movement, improving staffing, reducing delays, and maximizing productivity (Costin, Teizer, & Schoner, 2015). Additionally, public-private collaboration is crucial for funding upskilling initiatives and addressing labor shortages. Enhancing trade alignment, workspace optimization, and supply chain efficiency will further boost workforce productivity (Assaad et al., 2023; Rahman, 2014).

Environmental Solutions

Eco-friendly approaches like the use of rooftop solar panels (Faludi et al., 2012), cross-laminated timber (Lehmann, 2013), and energy-efficient flooring (Lee et al., 2014) reduce MOC's environmental footprint. Futhermore, energy-efficient design, circular economy principles, and Life Cycle Assessment (LCA) enhance material use (Ali et al., 2023; Zhong et al., 2017). Lean construction optimizes resources and minimizes waste (Nahmens & Ikuma, 2012), and efficient transport scheduling with standardized packaging lowers urban environmental impacts (Choi et al., 2019). IoT and BIM improve resource management, streamline planning, and cut transport emissions (Zhong et al., 2023), while BIM-RFID integration boosts monitoring and reduces waste (Darko et al., 2020). Together, these advancements make MOC more sustainable by cutting carbon emissions and enhancing efficiency.

This study did not fully capture emerging trends and regional differences in MOC adoption. In addition to the MOC barriers categorized in this study, other existing barriers such as social, cultural, or political factors need to be investigated in future work. It also did not incorporate input from diverse stakeholders, which could help improve the identification of barriers and the development of solutions related to MOC adoption.

Conclusion

MOC offers significant benefits, including efficiency, cost savings, sustainability, and reduced labor dependency. Despite its potential, adoption remains limited due to various challenges. This study identifies and categorizes these barriers into six key areas: regulatory, economic, technical, organizational, workforce, and environmental. It also proposes targeted solutions to support broader implementation. Future efforts should focus on stakeholder-specific strategies, improved collaboration between industry and academia, standardized life cycle assessments, and the integration of renewable energy solutions, and the development of a stakeholder survey to validate and prioritize the identified barriers to ensure the long-term viability of MOC.

Acknowledgements

The authors acknowledge the financial support of the National Research Council of Canada (NRC) Construction Sector Digitalization and Productivity Challenge program (CSDP) under Agreement #CSDP011-1, titled "Transformation from Conventional to Industrialized Construction".

References

- Ajayi, S.O., Oyedele, L.O., Akinade, O.O., Bilal, M., Owolabi, H.A., Alaka, H.A., and Kadiri, K.O. 2016. Reducing waste to landfill: A need for cultural change in the UK construction industry. *Journal of Building Engineering*, 5, pp.185–193. https://doi.org/10.1016/j.jobe.2015.12.007
- Alhawamdeh, M. and Lee, A. (2024). A systematic review and meta-synthesis of the barriers of offsite construction projects. *International Journal of Construction Management*, 1–13. https://doi.org/10.1080/15623599.2024.2397287
- Ali, A.H., Kineber, A.F., Elyamany, A., Ibrahim, A.H., and Daoud, A.O. 2023. Identifying and assessing modular construction implementation barriers in developing nations for sustainable building development. *Sustainable Development*, *31*(5), pp. 3346–3364. https://doi.org/10.1002/sd.2589
- Almughrabi, F.M., Samarasinghe, D.A.S., and Rotimi, F.E. 2021. Analysis of skill shortages in prefabricated residential construction: A case for New Zealand. In *Proceedings of the 37th Annual ARCOM Conference, ARCOM* (pp. 481–490).
- Altaf, M.S., Bouferguene, A., Liu, H., Al-Hussein, M., and Yu, H. 2018. Integrated production planning and control system for a panelized home prefabrication facility using simulation and RFID. *Automation in Construction*, 85, pp.369-383.https://doi.org/10.1016/j.autcon.2017.09.009
- Alwisy, A., Bu Hamdan, S., Barkokebas, B., Bouferguene, A., and Al-Hussein, M. 2019. A BIM-based automation of design and drafting for manufacturing of wood panels for modular residential buildings. *International Journal of Construction Management*, 19(3), pp.187–205. https://doi.org/10.1080/15623599.2017.1411458
- Assaad, R.H., El-Adaway, I.H., Hastak, M., and LaScola Needy, K. 2022. The impact of offsite construction on the workforce: Required skillset and prioritization of training needs. *Journal of Construction Engineering and Management*, 148(7), 04022056. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002314
- Assaad, R.H., El-Adaway, I.H., Hastak, M., and LaScola Needy, K. 2023. Key factors affecting labor productivity in offsite construction projects. *Journal of Construction Engineering and Management*, *149*(1), 04022158. https://doi.org/10.1061/JCEMD4.COENG-12654
- Chang, Y., Li, X., Masanet, E., Zhang, L., Huang, Z., and Ries, R. 2018. Unlocking the green opportunity for prefabricated buildings and construction in China. *Resources, Conservation and Recycling*, *139*, pp. 259–261. https://doi.org/10.1016/j.resconrec.2018.08.025
- Chen, H. and Samarasinghe, D.A.S. 2020. The factors constraining the adoption of prefabrication in the New Zealand residential construction sector: Contractors' perspective. In *Proceedings–New Zealand Built Environment Research Symposium* (p. 172).
- Cheng, C., Shen, K., Li, X., and Zhang, Z. 2017. Major barriers to different kinds of prefabricated public housing in China: The developers' perspective. In *ICCREM 2017* (pp. 79–88).
- Chiang, Y.H., Chan, E.H.W., and Lok, L.K.L. 2006. Prefabrication and barriers to entry—A case study of public housing and institutional buildings in Hong Kong. *Habitat International*, 30(3), pp. 482–499. https://doi.org/10.1016/j.habitatint.2004.12.004
- Choi, J.O., Chen, X.B., and Kim, T.W. 2019. Opportunities and challenges of modular methods in dense urban environment. *International Journal of Construction Management*, 19(2), pp. 93–105.https://doi.org/10.1080/15623599.2017.1382093
- Costin, A.M., Teizer, J., and Schoner, B. 2015. RFID and BIM-enabled worker location tracking to support real-time building protocol and data visualization. *Journal of Information Technology in Construction (ITcon)*, 20(29), pp. 495–517.
- Darko, A., Chan, A.P., Yang, Y., and Tetteh, M.O. 2020. Building information modeling (BIM)-based modular integrated construction risk management–Critical survey and future needs. *Computers in Industry*, 123, 103327. https://doi.org/10.1016/j.compind.2020.103327
- Faludi, J., Lepech, M.D., and Loisos, G. 2012. Using life cycle assessment methods to guide architectural decision-making for sustainable prefabricated modular buildings. *Journal of Green Building*, 7(3), pp. 151–170. https://doi.org/10.3992/jgb.7.3.151
- Ginigaddara, B., Perera, S., Feng, Y., and Rahnamayiezekavat, P. 2019. Skills required for offsite construction. In *Constructing Smart Cities: Proceedings of the 22nd CIB World Building Congress*.
- Hall, D., Lehtinen, T., Levitt, R.E., Li, C., and Padachuri, P. 2014. The role of integrated project delivery elements in adoption of integral innovations. In *Engineering Project Organization Conference 2014*, *Devil's Thumb Ranch*, *Colorado*, *July 29–31*, *2014* (pp. 1–20). Engineering Project Organization Society (EPOS).

- Hatata, N., El-nemr, M., and Agrama, F. 2022. Examining the adoption of prefabricated construction methods for building housing in Egypt. *Journal of Engineering Research*, 6(5), pp. 166–176.
- Hong, J., Shen, G.Q., Mao, C., Li, Z., and Li, K. 2016. Life-cycle energy analysis of prefabricated building components: An input-output-based hybrid model. *Journal of cleaner production*, *112*, pp. 2198–2207. https://doi.org/10.1016/j.jclepro.2015.10.030
- Jaillon, L. and Poon, C.S. 2009. The evolution of prefabricated residential building systems in Hong Kong: A review of the public and the private sector. *Automation in Construction*, 18(3), pp. 239–248. https://doi.org/10.1016/j.autcon.2008.09.002
- Jensen, P., Olofsson, T., and Johnsson, H. 2012. Configuration through the parameterization of building components. *Automation in Construction*, 23, pp. 1–8. https://doi.org/10.1016/j.autcon.2011.11.016
- Jin, R., Hong, J., and Zuo, J. 2020. Environmental performance of off-site constructed facilities: A critical review. *Energy and Buildings*, 207, 109567. https://doi.org/10.1016/j.enbuild.2019.109567
- Karlsson, I., Rootzén, J., Toktarova, A., Odenberger, M., Johnsson, F., and Göransson, L. 2020. Roadmap for decarbonization of the building and construction industry—A supply chain analysis including primary production of steel and cement. *Energies*, *13*(16), p. 4136. https://doi.org/10.3390/en13164136
- Khan, A.A., Amirkhani, M., and Martek, I. 2024. Overcoming deterrents to modular construction in affordable housing: A systematic review. *Sustainability*, 16(17), p. 7611. https://doi.org/10.3390/su16177611
- Langston, C. and Zhang, W. 2021. DfMA: Towards an integrated strategy for a more productive and sustainable construction industry in Australia. *Sustainability*, *13*(16), p. 9219. https://doi.org/10.3390/su13169219
- Lee, W.H., Kim, K.W., and Lim, S.H. 2014. Improvement of floor impact sound on modular housing for sustainable building. *Renewable and Sustainable Energy Reviews*, 29, pp. 263–275. https://doi.org/10.1016/j.rser.2013.08.054
- Lehmann, S. 2013. Low carbon construction systems using prefabricated engineered solid wood panels for urban infill to significantly reduce greenhouse gas emissions. *Sustainable Cities and Society*, 6, pp. 57–67. https://doi.org/10.1016/j.scs.2012.08.004
- Li, M. 2023. Investigation of the severity of modular construction adoption barriers with large-scale group decision making in an organization from internal and external stakeholder perspectives. *CMES-Computer Modeling in Engineering & Sciences*, 137(3).
- Lin, T., Lyu, S., Yang, R.J., and Tivendale, L. 2022. Offsite construction in the Australian low-rise residential buildings application levels and procurement options. *Engineering, Construction and Architectural Management*, 29(1), pp.110-140. https://doi.org/10.1108/ECAM-07-2020-0583.
- Lu, A., 2017. Autonomous assembly as the fourth approach to generic construction. *Architectural design*, 87(4), pp.128-133.https://doi.org/10.1002/ad.2205
- Lu, A., 2017. Autonomous assembly as the fourth approach to generic construction. *Architectural design*, 87(4), pp.128-133.https://doi.org/10.1016/j.habitatint.2016.08.002
- Mehdipoor, A., Iordanova, I., and Al-Hussein, M., 2023. Identification and evaluation of the key decision support factors for selecting off-site construction in Canada: A building information modeling (BIM)-enabled approach. *Digital Manufacturing Technology*, pp. 137–155. https://doi.org/10.37256/dmt.3220232944
- Marwan, G., Chang-Richards, A., Xu, X., Höök, M., Stehn, L., Jähne, R., Hall, D., Park, K., Hong, J., and Feng. Y. 2022. Building code compliance for off-site construction. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction* 15(2) 04522056. https://doi.org/10.1061/JLADAH.LADR-856
- Nahmens, I. and Ikuma, L.H. 2012. Effects of lean construction on sustainability of modular homebuilding. *Journal of Architectural Engineering*, 18(2), pp. 155–163. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000054
- O'Connor, J.T., O'Brien, W.J., and Choi, J.O. 2014. Critical success factors and enablers for optimum and maximum industrial modularization. *Journal of construction engineering and management*, 140(6), 04014012. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000842
- Pan, W., Gibb, A.G., and Dainty, A.R. 2007. Perspectives of UK housebuilders on the use of offsite modern methods of construction. *Construction Management and Economics*, 25(2), pp. 183–194. https://doi.org/10.1080/01446190600827058
- Patel, M. and RazaviAlavi, S. 2022. Decision factors for the feasibility study of developing a prefabrication plant. *Modular and Offsite Construction* (*MOC*) Summit Proceedings, pp. 169–176. https://doi.org/10.29173/mocs279
- Rahman, M.M., 2014. Barriers of implementing modern methods of construction. *Journal of Management in Engineering*, 30(1), pp. 69–77. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000173
- Razkenari, M., Fenner, A., Shojaei, A., Hakim, H., and Kibert, C. 2020. Perceptions of offsite construction in the United States: An investigation of current practices. *Journal of Building Engineering*, 29, 101138.

- https://doi.org/10.1016/j.jobe.2019.101138
- Ribeiro, A.M., Arantes, A., and Cruz, C.O. 2022. Barriers to the adoption of modular construction in Portugal: An interpretive structural modeling approach. *Buildings*, *12*(10), p. 1509. https://doi.org/10.3390/buildings12101509
- Saad, S., Rasheed, K., Ammad, S., Hasnain, M., Ullah, H., Qureshi, A.H., Alawag, A.M., Altaf, M., and Sadiq, T. 2025. Offsite modular construction adoption in developing countries: Partial least square approach for sustainable future. *Ain Shams Engineering Journal*, *16*(1), 103228.
- Said, H.M. and Reginato, J. 2018. Impact of design changes on virtual design and construction performance for electrical contractors. *Journal of Construction Engineering and Management*, 144(1), 04017097.
- Sadoughi, A., Morefield, J.A., Razkenari, M.A., and Kibert, C.J. 2020. The role of architects in design-manufacturing-build of building industry: A case study. In *Construction Research Congress* 2020. pp. 1358–1365. Reston, VA: American Society of Civil Engineers.
- Sadoughi, A., Kouhirostami, M., Kouhirostamkolaei, M., Qi, B., and Costin, A. 2024. Autonomous building design for manufacturing and assembly: A systematic review of design application, challenges, and opportunities. *Journal of Construction Engineering and Management*, 150(9), 03124006. https://doi.org/10.1061/JCEMD4.COENG-13472
- Saliu, L.O., Monko, R., Zulu, S., and Maro, G. 2024. Barriers to the integration of building information modeling (BIM) in modular construction in Sub-Saharan Africa. *Buildings*, *14*(8), p.2448.
- Sarbini, N.N., Wee, Z.Y., and Thong, J.W. 2025. Evaluating productivity, safety and barriers in modular construction system implementation. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1453, No. 1, p. 012024). IOP Publishing. 10.1088/1755-1315/1453/1/012024
- Shahtaheri, Y., Rausch, C., West, J., Haas, C., and Nahangi, M. 2017. Managing risk in modular construction using dimensional and geometric tolerance strategies. *Automation in Construction*, 83, pp. 303–315. https://doi.org/10.1016/j.autcon.2017.03.011
- Steinhardt, D.A. and Manley, K. 2016. Adoption of prefabricated housing—the role of country context. *Sustainable Cities and Society*, 22, pp. 126–135.
- Sun, Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X., and Zhao, X. 2020. Constraints hindering the development of high-rise modular buildings. *Applied Sciences*, 10(20), p. 7159. https://doi.org/10.3390/app10207159
- Sutrisna, M., Ramnauth, V. and Zaman, A. 2022. Towards adopting off-site construction in housing sectors as a potential source of competitive advantage for builders. *Architectural Engineering and Design Management*, 18(3), pp. 165–183. https://doi.org/10.1080/17452007.2020.1807306
- Thirunavukkarasu, K., Kanthasamy, E., Gatheeshgar, P., Poologanathan, K., Rajanayagam, H., Suntharalingam, T., and Dissanayake, M. 2021. Sustainable performance of a modular building system made of built-up cold-formed steel beams. *Buildings*, 11(10), p. 460.
- Widanage, C. and Kim, K.P. 2024. Integrating Design for Manufacture and Assembly (DfMA) with BIM for infrastructure. *Automation in Construction*, 167, 105705. https://doi.org/10.1016/j.autcon.2024.105705
- Wuni, I.Y. and Shen, G.Q. 2020. Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies. *Journal of Cleaner Production*, 249, 119347. https://doi.org/10.1016/j.jclepro.2019.119347
- Wuni, I.Y., Shen, G.Q., and Saka, A.B. 2023. Computing the severities of critical onsite assembly risk factors for modular integrated construction projects. *Engineering, Construction and Architectural Management*, 30(5), pp. 1864–1882. https://doi.org/10.1108/ECAM-07-2021-0630
- Zhang, X., Skitmore, M., and Peng, Y. 2014. Exploring the challenges to industrialized residential building in China. *Habitat International*, 41, pp. 176–184. https://doi.org/10.1016/j.habitatint.2013.08.005
- Zhang, Y., Lei, Z., Han, S., Bouferguene, A., and Al-Hussein, M. 2020. Process-oriented framework to improve modular and offsite construction manufacturing performance. *Journal of Construction Engineering and Management*, 146(9), 04020116. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001909
- Zhang, J.F., Zhao, J.J., Yang, D.Y., Deng, E.F., Wang, H., Pang, S.Y., Cai, L.M., and Gao, S.C. 2020. Mechanical-property tests on assembled-type light steel modular house. *Journal of Constructional Steel Research*, 168, 105981.
- Zhong, R.Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Ng, S.T., Lu, W., Shen, G.Q., and Huang, G.Q. 2017. Prefabricated construction enabled by the Internet-of-Things. *Automation in Construction*, 76, pp. 59–70. https://doi.org/10.1016/j.autcon.2017.01.006