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ABSTRACT 
Digital data and associated semantics play a fundamental role in supporting the vision of 

Construction 4.0. Advancements in digitization workflows such as scan-to-BIM and automated 

meta-data generation are being used for data-driven decision making.  A challenge with collecting 

and processing raw, non-semantic data is the process of integrating intelligence into and 

characterizing data automatically. This paper demonstrates how spatial parameterization (i.e., 

extracting, modifying and analysing parameters that define the spatial properties of a component) 

can be used as a method for automating steps in disassembly planning for buildings. The potential 

use cases of disassembly planning include adaptive building reuse, robotic assembly programming, 

reconfigurable prefabricated assemblies and selective disassembly for rehabilitation and repairs. 

This paper presents spatial parameterization in a framework to disassemble building components 

via a rule-based algorithm that comprises three dimensional Cartesian properties and clash 

detection between non-semantic CAD elements. Demonstration of the framework is carried out 

using a case study where the interior wall of a building on the University of Waterloo campus was 

disassembled for adaptive reuse purposes. Comparison of the case study results to the actual 

disassembly sequence demonstrates how spatial parameterization is effective for automating key 

steps in disassembly planning. A discussion is provided to identify key barriers to increased 

automation which relate to modelling accuracy, Level of Development (LOD) for Building 

Information Modelling (BIM), and global spatial constraints for disassembly. 
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INTRODUCTION 
The influence of the fourth industrial revolution in the construction industry can already be seen in 

applications such as machine learning, artificial intelligence, additive manufacturing, big data, 

blockchain and high-performance computing, to name a few. Digitization – i.e., the convergence 

of digital and physical states – is considered to be the most powerful driver of innovation in the 

coming decades for the progression of the fourth industrial revolution (Kagermann 2015). 

However, the construction industry is among the least digitized, according to the 2015 McKinsey 

Global Institute industry digitization index (Agarwal et al. 2016). Developing associative data 

semantics and workflows for transforming data between physical and digital states is a core 

challenge that needs to be addressed in construction. Examples of existing workflows where digital 

data is extracted from physical or other non-digital entities include scan-to-BIM, scan-vs-BIM, 
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progress tracking, materials tracking, Internet of Things (IoT) applications, mobile computing and 

digital imaging analysis (Turkan et al. 2012; Bosché et al. 2015; Xu et al. 2018; Han and Golparvar-

Fard 2017; Kochovski and Stankovski 2018; Kim et al. 2013). Each of these workflows produce 

large datasets that require analysis for integration into value-adding processes and insights. While 

automation can be developed to help embed intelligence into the data generated in digitization 

workflows, in many cases, manual processing and cognition are still required to produce working 

solutions. For instance, scan-to-BIM algorithms can easily detect planar and cylindrical features 

but struggle with more complex features, which still rely on manual modelling. As digitization 

continues to evolve and shape the construction industry, we need to continue to search for and 

develop novel data processing approaches that can be used to solve diverse challenges.  

In life-cycle management of existing buildings, there is a growing interest to improve performance 

holistically from cradle to grave (i.e., from manufacturing to end-of-life). This is required to 

improve sustainability and to create the conditions necessary for a circular economy (Geissdoerfer 

et al. 2017), which is a model that moves away from a linear product usage (i.e., disposal at end-

of-life) towards increasing levels of reuse and product recovery (Korhonen et al. 2018). One way 

to address end-of-life product recovery in construction is adaptive building reuse which involves 

restoring and or changing the use of buildings entering their disuse stage. Adaptive reuse can 

maximize the residual utility and value of our aging building stock, bringing significant 

environmental and sustainability benefits. Disassembling components according to a specific 

sequence of steps (i.e., “disassembly sequence planning”) is a key part of the adaptive reuse process 

(Sanchez and Haas 2018). Disassembly sequence planning is common in the manufacturing 

industry, where it is used to extract and repair defective components in an assembly or for 

recovering salvageable components at a product’s end-of-life. Due to a lack of updated 

information, disassembly sequence planning in manufacturing is performed using incomplete data 

between the overall assembly and sub-assemblies (Vongbunyong and Chen 2015). Similarly in 

construction, updated data for components is not available since as-built models are often not 

current nor contain the required semantic information. As a result, disassembly planning relies on 

manual processes for defining relationships between components. Previously, the authors 

developed a novel framework for adaptive reuse of buildings based on the disassembly graph model 

(Sanchez and Haas 2018; Sanchez et al. 2019). This framework is the first of its kind to apply 

disassembly planning in construction in order to target key components for selective disassembly. 

Although this research creates tremendous opportunities for the construction industry, a major 

challenge in this work was that key spatial relationships of components had to be extracted 

manually, which is very tedious, time consuming and prone to errors.  

While extracting geometric information from 3D objects in BIM is a relatively trivial endeavour, 

the development of algorithms for higher order semantics (such as complex spatial relationships) 

is a challenge and remains elusive in many spheres of the construction industry (Lu et al. 2017). 

Traditional automated workflows in construction require groups of experienced programmers and 

software companies to develop custom-made solutions. This comes with high cost, long turnaround 

and requires a highly coherent software team who understands construction processes deeply. 

However, the advent of visual programming languages (VPL) for computational algorithm 

development (Erwig et al. 2017) has fostered a new way of developing custom software solutions 
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for the construction industry. While many VPLs were designed to only handle intuitive design tasks 

(Preidel and Borrmann 2016), recent developments and contributions from the open-source 

community have increased functionality for being able to address highly complex tasks. This paper 

demonstrates how intelligence can be extracted from non-semantic CAD elements (i.e., elements 

lacking parametric properties of spatial relationships with other elements) through a rule-based 

VPL algorithm that comprises three dimensional Cartesian properties and clash detection. 

Collectively, this process provides a way to analyze spatial parameters of components 

automatically which is demonstrated in this paper using a real adaptive reuse project. In doing so, 

several key challenges are outlined which need to be addressed in order to utilize other existing 

digitization workflows (e.g., scan-to-BIM) within the emerging Construction 4.0 ecosystem. 

METHODS 
This paper develops key spatial relationships between objects in a 3D model automatically for the 

purpose of supporting automated disassembly planning, and specifically in the novel framework 

previous introduced by the authors (Figure 1). This framework has five key matrices that define 

the underlying mechanics in terms of the spatial relationships between components in an assembly 

(information regarding how to obtain the 3D BIM model and how to target the disassembly 

components can be found in Sanchez and Haas 2018). The first matrix (component contact 

constraint matrix) defines the direct connectivity between components cn’. The second matrix 

(component motion constraint matrix) defines the first object(s) that will obstruct an object of 

interest from being disassembled in a given direction. The third and fourth matrices define the 

contact and motion constraints for fasteners between objects. The fifth matrix (component 

projection constraint matrix) is an extension of the motion constraint matrix, except it includes all 

obstructions for an object of interest in a given disassembly direction. Most approaches simplify 

the procedure by considering only principle Cartesian directions i.e., x, y, z (Smith et al. 2012). 

This paper does not consider fastener constraints since most 3D models in construction are not 

developed to the level of fastener details such as nails, screws, bolts, etc.  

 
Figure 1. Summary of previous work by authors for disassembly planning and scope of this 

paper as it relates to automating the extraction of key matrices.  
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Spatial Parameterization Framework  

Model initialization. The first step involves grouping CAD elements together according to their 

object definition. This enables all raw CAD elements (e.g., curves, surfaces, meshes, etc) to be 

assigned a unique object ID. If the existing BIM model was created using a parametric software 

such as Autodesk® Revit, raw CAD data is often already sorted into unique groups. Apart from 

manually grouping elements, emerging workflows are being developed to automatically recognize 

and semantically segment objects (Czerniawski and Leite 2018). The second part of model 

initialization is determining which objects are in direct contact with each other. Throughout this 

framework, clash detection is used as an event to trigger binary responses for contact between 

object groups (“1” for positive clash event, “0” for no clash). All binary clash events are initially 

stored in an n-dimensional array, where n is the total number of objects. 

Removing self-intersections from binary contact array. Since the process of clash detection 

between groups of objects will inevitably create self-intersections (each group can contain 

numerous CAD elements that are in contact with each other that will return positive clash events), 

these need to be removed from the binary contact array. 

Constraint matrices for components. For extracting the contact constraint matrix, each object is 

moved iteratively in each of the ± principle Cartesian directions (+x, -x, +y, -y, +z, -z) until it is 

brought into a negative clash condition (no contact, binary response of “0”). The distance in each 

direction to bring the objects out of contact is recorded, and the direction with the smallest distance 

is the disassembly direction. The motion constraint matrix is derived by iteratively moving each 

object in the principle Cartesian directions until the first clash event is detected. The contact 

object(s) in each direction are recorded in the motion constraint matrix. Finally, the projection 

constraint matrix is derived from the motion constraint matrix, with the only difference being that 

all objects in a given direction, and inside of the working-space, are recorded. For all matrices, if a 

given search (e.g., motion constraints for component c1 in the +x direction) turns up with a null 

response (i.e., no objects found), then by default a value of “-1” is inserted into the matrix. 

The spatial parameterization framework was programmed using Rhinoceros® software and a 

visual programming plugin called GrasshopperTM. As a NURBS (non-uniform rational B-spline) 

based software, Rhinoceros® does not intrinsically have meta-data and thus all CAD elements rely 

on an algorithmic approach to parametrically embed intelligence. A high-level depiction of the 

algorithm (with over 800 script components) is shown in Figure 2. 

Algorithm parameters. The distance for each iterative move is a parameter in the algorithm, but by 

default it is set at 10mm. Decreasing this threshold will not yield a more accurate result for object 

matrices but will significantly increase the computing demand (note that a smaller step value may 

be required for deriving fastener constraint matrices). Another algorithm parameter is tied to the 

motion constraint and project constraint matrices in the form of a maximum distance. In previous 

work (Sanchez et al. 2019), the authors have introduced a “working-space” of 1500mm which 

functions as a spatial envelope within which a construction worker can remove a given component 

from the assembly. This parameter is applied to both the motion and projection constraint matrices 

in order to define an upper bound on the iterative moves for each object.  
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Figure 2. Depiction of visual programming script for spatial parameterization framework. Script 

created using GrasshopperTM algorithmic software in Rhinoceros® modelling platform. 

RESULTS 
The spatial parameterization framework was used on data from an actual construction project, 

where an entire corridor of a building located at the University of Waterloo was redeveloped and 

repurposed. An important part of this project was disassembling the construction assembly so that 

objects such as sinks, cabinets, and some structural members could be either reused or properly 

recycled. For the purpose of determining a suitable disassembly plan, a 3D model of an interior 

wall was generated using Autodesk® Revit, and then subsequently imported as raw CAD elements 

(curves, surfaces and meshes) into Rhinoceros®, as shown in Figure 3. 

 

 

 

 

 

 

 

 

  

 

Once the elements were imported, they were grouped according to their object definition (e.g., all 

elements corresponding to the upper cabinet – object 3 – were grouped together). Then, using the 

Figure 3. Construction assembly for adaptive reuse case study. 3D CAD elements categorized 

into groups, numerically annotated and coloured for visualization purposes. Note: the numbers in 

this figure only represent object labelling, and do not reflect the disassembly sequence. 
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algorithm depicted in Figure 2, a contact constraint matrix (Eqn. 1), motion constraint matrix (Eqn. 

2) and project constraint matrix (Eqn. 3) were automatically produced. The output from the 

algorithm is a text file, delineated by commas to represent principle Cartesian directions, which 

can be imported into the disassembly planning workflow. For comparison, a manual approach was 

employed for generating this data. The authors manually isolated each component in the model and 

recorded the objects in direct contact, and the objects constraining motion and projection. 
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Algorithm performance. Minor discrepancies between the automated and manual approaches were 

detected. After analysis, these differences were found to be missing constraint components in the 

matrices produced in manual approach, demonstrating that the automated approach is suitable of 

catching human errors. The automated approach was found to be 100% accurate for extracting the 

contact, motion and project constraints. This accuracy does however depend on having a properly 

configured BIM model, e.g., no overlapping objects, no gaps between objects that should be in 

contact, etc. Of course, the accuracy suffers with bad input and an incorrectly configured BIM 

model. Furthermore, the process of iterating principle movements, checking for collisions and 

cross-referencing components was found to be computationally heavy. This is likely based on the 

distance threshold used for iterating movements (set at 10mm), the working space parameter (set 

at 1500mm) and the level of model complexity (this 3D model contained 182 curves and 3364 

mesh elements). The automated approach took 243min to extract the contact constraint matrix, 

734min for the motion constraint matrix and 1076min for the projection constraint matrix. With a 

total run time of 2053 mins, there were no direct time savings for using this algorithm over a manual 

approach (which took 145 mins in total). However, the benefit of an automated approach is that 

this process can be run in the background of other processes at very little cost. In addition, the 

accuracy of the extracted data can be improved. Moreover, with higher powered processors, the 

algorithm run time could be reduced to become faster than the manual approach.  

CONCLUSION 
Considering the unique demands of the fourth industrial revolution, the construction industry needs 

to continue developing innovative approaches to digitization. The benefits of automated 

digitization workflows far outweigh using manual approaches, notwithstanding the practical 

limitations that need to be overcome. As evidenced in this paper, even if automated digitization 

workflows (while in their infancy) may not bring direct time savings, reduced labour costs, parallel 

processing and improved data accuracy can still be realized. With improvements to computing 
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capabilities expected in the future, even computationally heavy algorithms can be faster than 

manual approaches. Previously, the authors developed a novel application of disassembly planning 

for buildings that supports adaptive reuse. A challenge in this work was the manual steps involved 

for initialization of required matrices. This paper demonstrates how spatial parameterization and 

clash detection can be used to automatically define geometric relationships between components 

in an assembly with non-semantic CAD data. This method was found to catch human errors and 

enable parallel processing, despite the long runtime. Lessons learned in previous studies indicate 

that due to the large quantity of semantic data to retrieve from the BIM model, manual input 

mistakes are highly probable. In fact, in each of the previous case studies, the authors detected 

initial mistakes with the manual process of creating the initial matrices, pointing to the reliability 

of the proposed method in this paper for catching these inevitable costly mistakes. 

Challenges processing construction assembly data. In the case study, many model components 

were not initially in direct contact that should have been (e.g., the upper horizontal frame member 

– component c0 – was not in direct contact with vertical frame members – components c9 to c23). 

As a result, manual processing was required to improve this modelling accuracy. While this issue 

can be addressed upfront within parametric modellers such as Autodesk® Revit, it is much more 

likely to exist in non-semantic datasets where there is no active parametric control for ensuring 

contact between components (such as for mesh models or in NURBS-based models). Another 

major challenge with analysis of as-built data relates to uncertainty in assembly composition. For 

instance, if no updated model exists for a construction assembly, it is difficult to determine hidden 

components (e.g., not knowing what lies behind a wall before disassembly; this results from not 

having up-to-date BIM information). In general, data uncertainty is also very challenging for the 

success of disassembly planning since it can be difficult to gage component quality, and to detect 

defective connections that reduce ease of disassembly. 

Limitations. As described in the methods section, this paper does not automatically extract 

constraint matrices for fasteners. This is due to the lack of granularity for fastener details in most 

BIM models. Another limitation to the proposed algorithm is that highly interconnected (and multi-

system) construction assemblies such as pipe assemblies embedded in walls cannot be analyzed 

since the removal of certain components requires some aspect of deconstruction or “cutting”. As 

such, the proposed algorithm can only be used for linear extraction processes. 

Future work. The authors are exploring methods to decrease the run time through the following 

aspects: reducing the model complexity (i.e., filtering only CAD elements that pertain to the 

geometric envelop of an object), exploring what level of detail is required for objects, and 

optimizing parameter presets in the algorithm (iterative distance value and working-space). Within 

the algorithm, other improvements can be made so that once a direction has been defined for a 

given component constraint, redundant processing in elapsed for-loops can be terminated. To 

automate the process of extracting fastener constraint matrices, the authors are exploring the use 

of heuristics to automatically embed this detail into the model, as well as to solve geometric 

discrepancies between components (e.g., components that should be in contact which are not). 

Finally, the authors aim to explore use cases for the proposed algorithm in the following contexts: 

scan-to-BIM (through a mesh model medium), and performance comparisons between various 

construction sectors (e.g., residential, commercial, industrial). 
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