Steel Beam-Column Joint with Discontinuous Vertical Reinforcing Bars

Authors

  • Ju-Yun Hu Department of Architectural Engineering, Kyung Hee University, Yongin, Republic of Korea
  • Won-Kee Hong Department of Architectural Engineering, Kyung Hee University, Yongin, Republic of Korea
  • Seon-Chee Park Department of Architectural Engineering, Kyung Hee University, Yongin, Republic of Korea
  • Jisoon Kim Department of Architectural Engineering, Kyung Hee University, Yongin, Republic of Korea

DOI:

https://doi.org/10.29173/mocs154

Abstract

The authors proposed steel beam-column connections for precast concrete frames in previous studies. The steel-concrete composite frames provided fast assembly time as steels with economy of concrete structures. However, when enough space is not available at column-beam joints steel sections from beams cannot be connected with column brackets. This paper suggests that some vertical reinforcing bars are disconnected at joints by connecting vertical steel reinforcements to steel plates placed above and below column steels to provide load transferring path. Loads from re-bars are transferred to steel plates, column steels and back to steel plates and re-bars below column steels. Re-bars connected to steel plates by bolts at above and below column steel are discontinued at joint to provide spaces for connections between column brackets and beam steels. Extensive experiments were performed to verify load transfer from re-bars to steel plates above joints and steel plates to re-bars below joint. The flexural load bearing capacity of a column with total of 24 vertical re-bars were compared to columns with discontinuous re-bars at joints. The number of discontinuous re-bars at joint used in column specimen was 0 (0.0%), 4 (16.7%), 12 (50.0%), and 20 (83.3%). The numbers in parenthesis are the percentages of discontinuous rebars to the total number of vertical re-bars of control column. Experiments showed how loads from vertical steel reinforcements that were cut off at joints were transferred to steel plate. The test results also demonstrated that a part of flexural capacities were reduced for specimen with discontinuous vertical re-bars. The reduction of 6.0 %, 13.7% and 54.0% of flexural capacities were observed for columns with 4 (16.7%), 12 (50.0%) and 20 (83.3%) discontinuous vertical rebars, respectively. The test results can be used to design vertical reinforcing bars and column joints that can provide space for column brackets to which steel members of beams are connected.

Downloads

Published

2015-05-21

Issue

Section

Proceedings