Serviceability Performance of Timber Concrete Composite Floors
DOI:
https://doi.org/10.29173/mocs95Abstract
There is much potential for engineered wood products to be used beyond low-rise residential construction when incorporating the notion of hybrid systems like timber-concrete-composites (TCC). TCC systems are comprised of a timber element connected to a concrete slab through a shear connection. By combining the complimentary properties of timber and concrete, the performance of timber floors can be enhanced, including bending stiffness, load-bearing capacity, dynamic response, airborne sound transmission, structural fire rating, and thermal mass. A large number of T-beam TCC systems existed for decades; however, the growing availability of panel-type products in North America offers designers greater versatility in terms of structural and building physics performance. While stiffness and strength design of TCC systems is straight-forward, there is little design guidance available in terms of vibration and long-term performance. The bending, vibration and long-term performance for a range of TCC systems in several EWPs were validated on small-scale shear tests, floor panels subjected to serviceability loads for 2.5 years, and subsequent full-size bending tests. The tests confirmed that calculations according to the ?-method can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy.Downloads
Published
2019-05-24
Issue
Section
Proceedings
License
MOC Summit Proceedings are distributed under a Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) license that allows others to download these proceedings and share them with others with an acknowledgement of the work's authorship and initial publication in these proceedings. These proceedings may not be changed in any way or used commercially.